Skip to main content
Log in

Anomalous Resonance Frequency Shift of a Microelectromechanical Oscillator in Superfluid \(^3\)He-B

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A superfluid \(^3\)He film with a thickness of 1.25 \(\upmu \)m was studied using a microelectromechanical oscillator at various pressures of 9.2, 18.2, 25.2, and 28.6 bars. The oscillator was driven in the linear damping regime where the damping coefficient is independent of the velocity of the oscillator. The resonance frequency shows weak temperature and pressure dependences in the low temperature limit. An inertia coefficient of \(\approx \)0.1 was obtained in the ballistic regime. When the temperature rose from the lowest temperature, the resonance frequency of the resonator exhibited an unusual behavior, a rapid increase beyond the intrinsic value as temperature increases, for 9.2 and 18.2 bars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. To be published elsewhere.

References

  1. A.A. Abrikosov, L.P. Gor’kov, Sov. Phys. JETP 12, 1243 (1961)

    Google Scholar 

  2. L.J. Buchholtz, G. Zwicknagl, Phys. Rev. B 23, 5788 (1981). doi:10.1103/PhysRevB.23.5788

    Article  ADS  Google Scholar 

  3. V. Ambegaokar, P.G. de Gennes, D. Rainer, Phys. Rev. A 9, 2676 (1974). doi:10.1103/PhysRevA.9.2676

    Article  ADS  Google Scholar 

  4. W. Zhang, J. Kurkijärvi, E.V. Thuneberg, Phys. Rev. B 36, 1987 (1987). doi:10.1103/PhysRevB.36.1987

    Article  ADS  Google Scholar 

  5. Y. Nagato, M. Yamamoto, K. Nagai, J. Low Temp. Phys. 110, 1135 (1998). doi:10.1023/A:1022368301143

    Article  ADS  Google Scholar 

  6. A.B. Vorontsov, J.A. Sauls, Phys. Rev. B 68, 064508 (2003). doi:10.1103/PhysRevB.68.064508

    Article  ADS  Google Scholar 

  7. G. Barton, M.A. Moore, J. Low Temp. Phys. 21, 489 (1975). doi:10.1007/BF01141605

    Article  ADS  Google Scholar 

  8. L.H. Kjäldman, J. Kurkijärvi, D. Rainer, J. Low Temp. Phys. 33, 577 (1978). doi:10.1007/BF00115576

    Article  ADS  Google Scholar 

  9. A.L. Fetter, S. Ullah, J. Low Temp. Phys. 70, 515 (1988). doi:10.1007/BF00682163

    Article  ADS  Google Scholar 

  10. Y. Aoki, Y. Wada, M. Saitoh, R. Nomura, Y. Okuda, Y. Nagato, M. Yamamoto, S. Higashitani, K. Nagai, Phys. Rev. Lett. 95, 075301 (2005). doi:10.1103/PhysRevLett.95.075301

    Article  ADS  Google Scholar 

  11. K. Nagai, Y. Nagato, M. Yamamoto, S. Higashitani, J. Phys. Soc. Jpn. 77, 111003 (2008). doi:10.1143/JPSJ.77.111003

    Article  ADS  Google Scholar 

  12. S. Murakawa, Y. Tamura, Y. Wada, M. Wasai, M. Saitoh, Y. Aoki, R. Nomura, Y. Okuda, Y. Nagato, M. Yamamoto, S. Higashitani, K. Nagai, Phys. Rev. Lett. 103, 155301 (2009). doi:10.1103/PhysRevLett.103.155301

    Article  ADS  Google Scholar 

  13. H. Choi, J.P. Davis, J. Pollanen, W.P. Halperin, Phys. Rev. Lett. 96, 125301 (2006). doi:10.1103/PhysRevLett.96.125301

    Article  ADS  Google Scholar 

  14. D.I. Bradley, S.N. Fisher, A.M. Guénault, R.P. Haley, C.R. Lawson, G.R. Pickett, R. Schanen, M. Skyba, V. Tsepelin, D.E. Zmeev, Nat. Phys. 12, 1017 (2016). doi:10.1038/nphys3813

    Article  Google Scholar 

  15. C.A.M. Castelijns, K.F. Coates, A.M. Guénault, S.G. Mussett, G.R. Pickett, Phys. Rev. Lett. 56, 69 (1986). doi:10.1103/PhysRevLett.56.69

    Article  ADS  Google Scholar 

  16. G.E. Volovik, JETP Lett. 90, 398 (2009). doi:10.1134/S0021364009170172

    Article  ADS  Google Scholar 

  17. J.P. Davis, J. Pollanen, H. Choi, J.A. Sauls, W.P. Halperin, A.B. Vorontsov, Phys. Rev. Lett. 101, 085301 (2008). doi:10.1103/PhysRevLett.101.085301

    Article  ADS  Google Scholar 

  18. J. Elbs, C. Winkelmann, Y.M. Bunkov, E. Collin, H. Godfrin, J. Low Temp. Phys. 148, 749 (2007). doi:10.1007/s10909-007-9428-4

    Article  ADS  Google Scholar 

  19. Y. Kuroda, A.D.S. Nagi, Phys. B 85, 131 (1977). doi:10.1016/0378-4363(76)90105-4

    Article  Google Scholar 

  20. T. Fujita, M. Nakahara, Prog. Theor. Phys. 64, 396 (1980). doi:10.1143/PTP.64.396

    Article  ADS  Google Scholar 

  21. Y.H. Li, T.L. Ho, Phys. Rev. B 38, 2362 (1988). doi:10.1103/PhysRevB.38.2362

    Article  ADS  Google Scholar 

  22. Y. Nagato, K. Nagai, Phys. B 284–288, 269 (2000). doi:10.1016/S0921-4526(99)02594-6

    Article  Google Scholar 

  23. Z. Tešanović, O.T.V. and, Phys. Rev. B 34, 7610 (1986). doi:10.1103/PhysRevB.34.7610

    Article  ADS  Google Scholar 

  24. J. Hara, K. Nagai, Prog. Theor. Phys. 76, 1237 (1986). doi:10.1143/PTP.76.1237

    Article  ADS  Google Scholar 

  25. A.B. Vorontsov, J.A. Sauls, Phys. Rev. Lett. 98, 045301 (2007). doi:10.1103/PhysRevLett.98.045301

    Article  ADS  Google Scholar 

  26. J.J. Wiman, J.A. Sauls, J. Low Temp. Phys. 184, 1054 (2016). doi:10.1007/s10909-016-1632-7

    Article  ADS  Google Scholar 

  27. K. Aoyama, J. Phys. Soc. Jpn. 85, 094604 (2016). doi:10.7566/JPSJ.85.094604

    Article  ADS  Google Scholar 

  28. A.I. Ahonen, M. Krusius, M.A. Paalanen, J. Low Temp. Phys. 25, 421 (1976). doi:10.1007/BF00655840

    Article  ADS  Google Scholar 

  29. M.R. Freeman, R.S. Germain, E.V. Thuneberg, R.C. Richardson, Phys. Rev. Lett. 60, 596 (1988). doi:10.1103/PhysRevLett.60.596

    Article  ADS  Google Scholar 

  30. J.C. Davis, A. Amar, J.P. Pekola, R.E. Packard, Phys. Rev. Lett. 60, 302 (1988). doi:10.1103/PhysRevLett.60.302

    Article  ADS  Google Scholar 

  31. J. Xu, B.C. Crooker, Phys. Rev. Lett. 65, 3005 (1990). doi:10.1103/PhysRevLett.65.3005

    Article  ADS  Google Scholar 

  32. S.C. Steel, J.P. Harrison, P. Zawadzki, A. Sachrajda, J. Low Temp. Phys. 95, 759 (1994). doi:10.1007/BF00754714

    Article  ADS  Google Scholar 

  33. A.M.R. Schechter, R.W. Simmonds, R.E. Packard, J.C. Davis, Nature 396, 554 (1998). doi:10.1038/25090

    Article  ADS  Google Scholar 

  34. L.V. Levitin, R.G. Bennett, A. Casey, B. Cowan, J. Saunders, D. Drung, T. Schurig, J.M. Parpia, Science 340, 841 (2013). doi:10.1126/science.1233621

    Article  ADS  Google Scholar 

  35. L.V. Levitin, R.G. Bennett, E.V. Surovtsev, J.M. Parpia, B. Cowan, A.J. Casey, J. Saunders, Phys. Rev. Lett. 111, 235304 (2013). doi:10.1103/PhysRevLett.111.235304

    Article  ADS  Google Scholar 

  36. N. Zhelev, T.S. Abhilash, E.N. Smith, R.G. Bennett, X. Rojas, L.V. Levitin, J. Saunders, J.M. Parpia, ArXiv: 1610.07186 (2016)

  37. M. Saitoh, H. Ikegami, H. Mukuda, K. Kono, Phys. B 329, 131 (2003). doi:10.1016/S0921-4526(02)01930-0

    Article  ADS  Google Scholar 

  38. M. Saitoh, H. Ikegami, K. Kono, Phys. Rev. Lett. 117, 205302 (2016). doi:10.1103/PhysRevLett.117.205302

    Article  ADS  Google Scholar 

  39. M. Saitoh, H. Ikegami, H. Mukuda, K. Kono, J. Low Temp. Phys. 134, 357 (2004). doi:10.1023/B:JOLT.0000012579.18512.bc

    Article  ADS  Google Scholar 

  40. L.V. Levitin, R.G. Bennett, A. Casey, B. Cowan, J. Saunders, D. Drung, T. Schurig, J.M. Parpia, B. Ilic, N. Zhelev, J. Low Temp. Phys. 175, 667 (2014). doi:10.1007/s10909-014-1145-1

    Article  ADS  Google Scholar 

  41. A. Casey, J. Parpia, R. Schanen, B. Cowan, J. Saunders, Phys. Rev. Lett. 92, 255301 (2004). doi:10.1103/PhysRevLett.92.255301

    Article  ADS  Google Scholar 

  42. D.C. Carless, H.E. Hall, J.R. Hook, J. Low Temp. Phys. 50, 583 (1983). doi:10.1007/BF00683497

    Article  ADS  Google Scholar 

  43. A.M. Guénault, V. Keith, C.J. Kennedy, S.G. Mussett, G.R. Pickett, J. Low Temp. Phys. 62, 511 (1986). doi:10.1007/BF00683408

    Article  ADS  Google Scholar 

  44. R. Blaauwgeers, M. Blažková, M. Človečko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007). doi:10.1007/s10909-006-9279-4

    Article  ADS  Google Scholar 

  45. D.I. Bradley, P. Crookston, S.N. Fisher, A. Ganshin, A.M. Guénault, R.P. Haley, M.J. Jackson, G.R. Pickett, R. Schanen, V. Tsepelin, J. Low Temp. Phys. 157, 476 (2009). doi:10.1007/s10909-009-9982-z

    Article  ADS  Google Scholar 

  46. M. Defoort, S. Dufresnes, S.L. Ahlstrom, D.I. Bradley, R.P. Haley, A.M. Guénault, E.A. Guise, G.R. Pickett, M. Poole, A.J. Woods, V. Tsepelin, S.N. Fisher, H. Godfrin, E. Collin, J. Low Temp. Phys. 183, 284 (2016). doi:10.1007/s10909-015-1392-9

    Article  ADS  Google Scholar 

  47. M. González, P. Zheng, E. Garcell, Y. Lee, H.B. Chan, Rev. Sci. Instrum. 84, 025003 (2013). doi:10.1063/1.4790196

    Article  ADS  Google Scholar 

  48. M. González, P. Bhupathi, B.H. Moon, P. Zheng, G. Ling, E. Garcell, H.B. Chan, Y. Lee, J. Low Temp. Phys. 162, 661 (2011). doi:10.1007/s10909-010-0247-7

    Article  ADS  Google Scholar 

  49. M. González, W.G. Jiang, P. Zheng, C.S. Barquist, H.B. Chan, Y. Lee, Phys. Rev. B 94, 014505 (2016). doi:10.1103/PhysRevB.94.014505

    Article  ADS  Google Scholar 

  50. P. Zheng, W.G. Jiang, C.S. Barquist, Y. Lee, H.B. Chan, Phys. Rev. Lett. 117, 195301 (2016). doi:10.1103/PhysRevLett.117.195301

    Article  ADS  Google Scholar 

  51. P. Zheng, W.G. Jiang, C.S. Barquist, Y. Lee, H.B. Chan, Phys. Rev. Lett. 118, 065301 (2017)

  52. P. Zheng, W.G. Jiang, C.S. Barquist, Y. Lee, H.B. Chan, J. Low Temp. Phys. 183, 313 (2016). doi:10.1007/s10909-015-1388-5

    Article  ADS  Google Scholar 

  53. C.S. Barquist, J. Bauer, T. Edmonds, P. Zheng, W.G. Jiang, M. González, Y. Lee, H.B. Chan, J. Phys.: Conf. Ser. 568, 032003 (2014). doi:10.1088/1742-6596/568/3/032003

    Google Scholar 

  54. R.L. Rusby, M. Durieux, A.L. Reesink, R.P. Hudson, G. Schuster, M. Kühne, W.E. Fogle, R.J. Soulen, E.D. Adams, J. Low Temp. Phys. 126, 633 (2002). doi:10.1023/A:1013791823354

    Article  ADS  Google Scholar 

  55. W. Ni, J.S. Xia, E.D. Adams, P.S. Haskins, J.E. McKisson, J. Low Temp. Phys. 101, 305 (1995). doi:10.1007/BF00754593

    Article  ADS  Google Scholar 

  56. S.M. Tholen, J.M. Parpia, Phys. Rev. Lett. 68, 2810 (1992). doi:10.1103/PhysRevLett.68.2810

    Article  ADS  Google Scholar 

  57. D. Kim, M. Nakagawa, O. Ishikawa, T. Hata, T. Kodama, H. Kojima, Phys. Rev. Lett. 71, 1581 (1993). doi:10.1103/PhysRevLett.71.1581

    Article  ADS  Google Scholar 

  58. Y. Wada, S. Murakawa, Y. Tamura, M. Saitoh, Y. Aoki, R. Nomura, Y. Okuda, Phys. Rev. B 78, 214516 (2008). doi:10.1103/PhysRevB.78.214516

    Article  ADS  Google Scholar 

  59. S. Murakawa, M. Wasai, K. Akiyama, Y. Wada, Y. Tamura, R. Nomura, Y. Okuda, Phys. Rev. Lett. 108, 025302 (2012). doi:10.1103/PhysRevLett.108.025302

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Lancaster Low Temperature group for providing quartz tuning forks as one of the TF thermometers. This work is supported by the National Science Foundation, Grant No. DMR-1205891 (YL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, P., Jiang, W.G., Barquist, C.S. et al. Anomalous Resonance Frequency Shift of a Microelectromechanical Oscillator in Superfluid \(^3\)He-B. J Low Temp Phys 187, 309–323 (2017). https://doi.org/10.1007/s10909-017-1752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1752-8

Keywords

Navigation