Skip to main content
Log in

The Effect of Externally Applied Resonant Magnetic Perturbations on Fusion Product Dynamics in Toroidal Plasmas: Numerical Simulation

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The suppression of edge-localized modes by means of externally induced resonant magnetic perturbations (RMPs) has been investigated extensively on present-day tokamaks. In this paper we examine the modification of the loss of fusion born α-particles as effected by the application of RMPs in tokamak plasmas. This study was performed by means of test-particle simulations. To simplify the calculations we use a toroidal magnetic field model with circular magnetic flux surfaces. The transport properties of energetic α-particles are investigated during a 3 s time interval by tracing the test-particle ensemble with each particle trajectory following by integration of the full orbit equation. Three regimes of particle losses are identified during the evolution of the particle ensemble. A natural consequence of RMP excitation is the formation of magnetic islands together with stochastic magnetic layers at the plasma edge. The formation of these resonant magnetic field structures are associated with irregularities of the energetic α-particle orbits, which can substantially increase the loss of slowing down α-particles from the plasma periphery. At the same time the first orbit losses of fusion alphas are practically unaffected by RMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.W. Heidbrink, G.J. Sadler, Nucl. Fusion 34, 535 (1994)

    Article  ADS  Google Scholar 

  2. S.J. Zweben et al., Nucl. Fusion 40, 91 (2000)

    Article  ADS  Google Scholar 

  3. V.G. Kiptily et al., Nucl. Fusion 49, 065030 (2009)

    Article  ADS  Google Scholar 

  4. Ya.I. Kolesnichenko, Nucl. Fusion 20, 727 (1980)

  5. S.V. Putvinski, Nucl. Fusion 38, 1275 (1998)

    Article  ADS  Google Scholar 

  6. A. Fasoli et al., Nucl. Fusion 47, S264 (2007)

    Article  ADS  Google Scholar 

  7. P.N. Yushmanov, in Review of Plasma Physics, vol. 16, ed. by B. B. Kadomtsev (Springer, Moscow, 1987), p. 117

  8. V.A. Yavorskij et al., Phys. Plasmas 6, 3853 (1999)

    Article  ADS  Google Scholar 

  9. H. Mimata et al., Plasma Fusion Res. 4, 008 (2009)

    Article  ADS  Google Scholar 

  10. V.O. Yavorskij et al., Nucl. Fusion 50, 084022 (2010)

    Article  ADS  Google Scholar 

  11. A.A. Shishkin, I.N. Sidorenko, H. Wobig, J. Plasma and Fusion Res. 1, 480 (1998)

    Google Scholar 

  12. A.A. Shishkin et al., Nucl. Fusion 47, 800 (2007)

    Article  ADS  Google Scholar 

  13. Q. Yu, S. Gunter, Nucl. Fusion 49, 073030 (2009)

    Article  Google Scholar 

  14. YuK Moskvitina, A.A. Shishkin, Probl. At. Sci. Tech. 4, 104 (2008)

    Google Scholar 

  15. T.E. Evans et al., Phys. Rev. Lett. 92, 235003 (2004)

    Article  ADS  Google Scholar 

  16. T.E. Evans et al., Nucl. Fusion 45, 595 (2005)

    Article  ADS  Google Scholar 

  17. T.E. Evans et al., Nature Phys. 2, 419 (2006)

    Article  ADS  Google Scholar 

  18. Y. Liang et al., Plasma Phys. Control Fusion 49, B581 (2007)

    Article  ADS  Google Scholar 

  19. Y. Liang et al., J. Nucl. Mater. 390–391, 733 (2009)

    Article  Google Scholar 

  20. Y. Liang et al., Nucl. Fusion 50, 025013 (2010)

    Article  ADS  Google Scholar 

  21. E. Nardon et al., J. Nucl. Mater. 390–391, 773 (2009)

    Article  Google Scholar 

  22. P. Cahyna et al., Plasma Phys. Rep. 34, 746 (2008)

    Article  ADS  Google Scholar 

  23. O. Schmitz et al., J. Nucl. Mater. 390–391, 330 (2009)

    Article  Google Scholar 

  24. J.M. Canik et al., Nucl. Fusion 50, 034012 (2010)

    Article  ADS  Google Scholar 

  25. W. Suttrop et al., Fusion Eng. Design 84, 290 (2009)

    Article  Google Scholar 

  26. O. Schmitz et al., Plasma Phys. Control Fusion 50, 124029 (2008)

    Article  ADS  Google Scholar 

  27. H.E. Munick, N. Pomphrey, Nucl. Fusion 34, 1277 (1994)

    Article  ADS  Google Scholar 

  28. A. Shishkin, Nucl. Fusion 42, 344 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  29. G. Park et al., Phys. Plasmas 17, 102503 (2010)

    Article  ADS  Google Scholar 

  30. K. Tani et al., J. Phys. Soc. Jpn. 50, 1726 (1981)

    Article  ADS  Google Scholar 

  31. V. Yavorskij et al., 38th EPS Conference on Plasma Physics, Strasbourg (2011), P4.029

  32. Y.K. Moskvitina, A.A. Shishkin, Probl. At. Sci. Tech. 6, 19 (2008); http://vant.kipt.kharkov.ua/ARTICLE/VANT_2008_6/article_2008_6_19.pdf

  33. G.A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers, (Dover publications, Mineola, 2000), pp. 664–713

Download references

Acknowledgments

This work, supported by the European Community under the contract of Association between EURATOM and the Austrian Academy of Sciences (OEAW), was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Moskvitina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskvitina, Y.K., Moskvitin, A.O., Shyshkin, O.A. et al. The Effect of Externally Applied Resonant Magnetic Perturbations on Fusion Product Dynamics in Toroidal Plasmas: Numerical Simulation. J Fusion Energ 32, 247–253 (2013). https://doi.org/10.1007/s10894-012-9557-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9557-x

Keywords

Navigation