Skip to main content
Log in

Influence of indium substitution and microstructure changes on the magnetic properties evolution of Y3Fe5−xInxO12 (x = 0.0–0.4)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The role of indium (In) substitution in the dynamics of ferrimagnetism, structure and microstructure of yttrium iron garnet (YIG) employing sintering temperature as a temporary agent of composition and microstructural changes was examined closely and reported in this study. The nanoparticles of YIG powder samples with various In content (x = 0.0, 0.1, 0.2, 0.3, 0.4) were prepared via the mechanical alloying (MA) technique. A brief, yet revealing characterization of the samples was carried out by using a transmission electron microscopy, X-ray diffraction, Raman spectroscopy and scanning electron microscopy to analyse the structural and morphological properties, whereas B–H hysteresis graph and LCR-meter were used to measure the magnetic and thermo-magnetic behaviour respectively. The X-ray diffraction analysis of the samples prepared via the MA indicates the formation of single phase YIG structure at much lower sintering temperature than that in the conventional ceramic technique. The lattice constant increases as In content increases which obeys Vegard’s law due to the larger In3+ ions replacing the smaller Fe3+ ions. The grain size also increased with In content, indicating that the In3+ ion acts as a grain growth promoter. The saturation induction increased reaching about 699.1 G for x = 0.3 and decreased with further In substitution. Three stages of ordered magnetism formation were identified which attributed to development of crystallinity and larger grains for magnetic domain accommodation. The Curie temperature shows a decrement of 60 °C for In content changes from x = 0.0 to x = 0.4 due to weakening of superexchange interactions. Raman shifts from 268.1 to 272.2 cm−1 with increasing In content were observed due to stress developed in the YIG crystal structure. Possible mechanisms contribute to these properties are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Rodziah, M. Hashim, I.R. Idza, I. Ismayadi, A.N. Hapishah, M.A. Khamirul, Appl. Surf. Sci. 258, 2679–2685 (2012)

    Article  Google Scholar 

  2. V.G. Harris, IEEE Trans. Magn. 48(3), 1075–1104 (2012)

    Article  Google Scholar 

  3. A. Sztaniszlav, M. Farkas-Jahnke, M. Balla, J. Magn. Magn. Mater. 215–216, 188–193 (2000)

    Article  Google Scholar 

  4. R.G. Vidhate, V.D. Murumkas, R.G. Dorik, N.M. Makne, S.R. Nimbore, K.M. Jadhav, Rev. Res. 1(10), 1–4 (2012)

    Google Scholar 

  5. G. Cuijing, Z. Wei, J. Rongjin, Z. Yanwei, J. Magn. Magn. Mater. 323, 611–615 (2011)

    Article  Google Scholar 

  6. C.S. Kim, B.K. Min, S.J. Kim, S.R. Yoon, Y.R. Uhm, J. Magn. Magn. Mater. 254, 553 (2003)

    Article  Google Scholar 

  7. Z. Cheng, H. Yang, J. Mater. Sci.: Mater. Electron. 18, 1065 (2007)

    Google Scholar 

  8. U. Ozgur, Y. Alivov, H. Morkoc, J. Mater. Sci. 20, 911 (2009)

    Google Scholar 

  9. S. Verma, J. Chand, K.M. Batoo, M. Singh, J. Alloys Compd. 565, 148–153 (2013)

    Article  Google Scholar 

  10. S. Geller, J. Appl. Phys. 37, 1408 (1966)

    Article  Google Scholar 

  11. G. Winkler, P. Hansen, Mater. Res. Bull. 4(11), 825–837 (1969)

    Article  Google Scholar 

  12. P. Concalves, F.M. Figueiredo, Solid State Ion. 179, 991–994 (2008)

    Article  Google Scholar 

  13. T.K. Pathak, J.J.U. Buch, U.N. Trivedi, H.H. Joshi, K.B. Modi, J. Nanosci. Nanotechnol. 8, 4181–4187 (2008)

    Article  Google Scholar 

  14. R. Nazlan, M. Hashim, I. Ismail, I.R. Ibrahim, J. Supercond. Nov. Magn. 27(2), 631–639 (2014)

    Article  Google Scholar 

  15. P. Atkins, J.D. Paula, R. Friedman, Physical Chemistry: Quanta, Matter, and Change, 2nd edn. (Oxford University Press, Oxford, 2013), p. 337

    Google Scholar 

  16. R. Nazlan, M. Hashim, N.H. Abdullah, I.R. Ibrahim, I. Ismail, Adv. Mater. Res. 501, 324–328 (2012)

    Article  Google Scholar 

  17. F. Lamastra, R. Bianco, F. Leonardi, G. Montesperelli, F. Nanni, G. Gusmano, Mater. Chem. Phys. 107, 274–280 (2008)

    Article  Google Scholar 

  18. S. Verma, J. Chand, M. Singh, J. Magn. Magn. Mater. 324, 3252–3260 (2012)

    Article  Google Scholar 

  19. D.M. Hemeda, A. Tawfik, O.M. Hemeda, S.M. Dewidar, Solid State Sci. 11, 1350–1357 (2009)

    Article  Google Scholar 

  20. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, 1978), pp. 99, 301–303, 471

  21. P. Colomban, Mater. Sci. Forum 269, 453–454 (2004)

    Google Scholar 

  22. M. Maletin, E.G. Moshopoulou, A.G. Kontos, E. Devlin, A. Delimitis, V.T. Zaspalis, L. Nalbandian, V.V. Srdic, J. Eur. Ceram. Soc. 27, 4391–4394 (2007)

    Article  Google Scholar 

  23. T. Inui, N. Ogasawara, J. Appl. Phys. 49, 2019 (1978)

    Article  Google Scholar 

  24. C.P. Bean, J. Appl. Phys. 26, 1381–1383 (1955)

    Article  Google Scholar 

  25. A.D. Rao, P.B. Ramesh, P.R.M. Rao, S.B. Raju, J. Alloys Compd. 282, 268–273 (1999)

    Article  Google Scholar 

  26. R. Nazlan, I. Ismail, M. Hashim, S. Kanagesan, N.M. Saidin, Aust. J. Basic Appl. Sci. 8, 474–482 (2014)

    Google Scholar 

  27. A.M. Sankpal, S.S. Suryavanshi, S.V. Kakatkar, G.G. Tengshe, R.S. Patil, N.D. Chaudhari, S.R. Sarwant, J. Magn. Magn. Mater. 186, 349–356 (1998)

    Article  Google Scholar 

  28. J. Wu, C. Leighton, Phys. Rev. B 67, 174408 (2003)

    Article  Google Scholar 

  29. S. Thakur, S.C. Katyal, A. Gupta, V.R. Reddy, M. Singh, J. Appl. Phys. 105, 07A52 (2009)

    Google Scholar 

  30. J.M.D. Coey, Rare Earth Permanent Magnetism (Wiley, New York, 1996)

    Google Scholar 

Download references

Acknowledgments

This research was funded by Research Universiti Grant Scheme (RUGS), Grant Number: 9357800, Long-Term Research Grant Scheme (LRGS) 5526200 and MyBrainSc Scholarship Ministry of Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodziah Nazlan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazlan, R., Hashim, M., Ibrahim, I.R. et al. Influence of indium substitution and microstructure changes on the magnetic properties evolution of Y3Fe5−xInxO12 (x = 0.0–0.4). J Mater Sci: Mater Electron 26, 3596–3609 (2015). https://doi.org/10.1007/s10854-015-2874-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2874-x

Keywords

Navigation