Skip to main content
Log in

Metastable defect creation in tritiated hydrogenated amorphous silicon and the Staebler–Wronski effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Defect creation through tritium decay in tritiated hydrogenated amorphous silicon provides a unique technique for the study of defect dynamics in hydrogenated amorphous silicon (a-Si:H). Isothermal Capacitance Transient Spectroscopy (ICTS) and Constant Photocurrent Method (CPM) were used to measure the positively charged, D+, and negatively charged, D, states in the gap of a-Si:H:T, respectively. The samples were thermally annealed prior to the measurement of defect state densities. The ICTS experiments showed a decrease in the concentration of positively charged dangling bonds while the CPM measurements showed an increase in the density of D states with time. This increase was much larger than the concentration of decayed tritium atoms. The CPM results also showed that the Urbach energy decreased with time. The decrease in Urbach energy indicates a decrease in the concentration of weak bonds in the valence band tail and suggests weak bond to dangling bond conversion. CPM experiments carried out under bias confirm the role of excess carriers in the defect creation process. The dynamic defect pool model was developed to quantitatively explain the experimental data. The defect evolution in a-Si:H:T is similar to the evolution of defect states in light exposure studies, supporting the interpretation of the Staebler–Wronski effect in terms of weak bond to dangling bond conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.E.I. Schropp, M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling. (Springer, Toronto, 1998)

    Google Scholar 

  2. Y. Kuo, Thin film transistors: materials and processes. Kluwer Academic, Toronto, 2004)

    Google Scholar 

  3. L.S. Sidhu, T. Kosteski, S. Zukotynski, N. Kherani, J. Appl. Phys. 85, 2574 (1999)

    Article  CAS  Google Scholar 

  4. F. Gaspari, T. Kosteski, S. Zukotynski, N.P. Kherani, W.T. Shmayda, Philos. Mag. B 80, 561 (2000)

    Article  CAS  Google Scholar 

  5. T. Kosteski, PhD Thesis, University of Toronto (2001)

  6. C. Tsang, R.A. Street, Phys. Rev. B 18, 1880 (1978)

    Article  Google Scholar 

  7. J. Whitaker, J. Viner, S. Zukotynski, E. Johnson, P.C. Taylor, S. Stradins, MRS Symp. Proc. 808, A2.4.1 (2004)

    Google Scholar 

  8. S. Pisana, S. Costea, T. Kosteski, Shmayda W.T., Kherani N.P, Zukotynski, J. Appl. Phys. 98, 093705 (2005)

    Article  Google Scholar 

  9. G. Mensing, J. Gilligan, P. Hari, E. Hurt, G. Lupke, S. Pantelides, N. Tolk, P.C. Taylor, J. Non-Cryst. Solids 299–302, 621 (2002)

    Article  Google Scholar 

  10. T. Kosteski, N.P. Kherani, F. Gaspari, S. Zukotynski, W.T. Shmayda, J. Vac. Sci. Technol. A 16, 893 (1998)

    Article  CAS  Google Scholar 

  11. S. Costea, PhD Thesis, University of Toronto (2006)

  12. M. Stutzmann in Properties of Amorphous Silicon and its Alloys, ed. by T. Searle, (INSPEC, The Institution of Electrical Engineers, London, 1998)

    Google Scholar 

  13. Y.E. Chen, F.S. Wang, J.W. Tsai, H.C. Cheng, Jpn. J. Appl. Phys. 33, 6727 (1994)

    Article  CAS  Google Scholar 

  14. P. Jensen, Solid State Commun. 76, 1301 (1990)

    Article  CAS  Google Scholar 

  15. M.J. Powell, S.C. Deane, Phys. Rev. B 48, 10815 (1993)

    Article  CAS  Google Scholar 

  16. F. Vaillant, D. Jousse, Phys. Rev. B 34, 4088 (1986)

    Article  CAS  Google Scholar 

  17. E.A. Schiff, Philos. Mag. Lett. 55, 87 (1987)

    Article  CAS  Google Scholar 

  18. M. Stutzmann, Phys. Rev. B 35, 9735 (1987)

    Article  CAS  Google Scholar 

  19. M. Stutzmann, Philos. Mag. B 60, 531 (1989)

    Article  CAS  Google Scholar 

  20. K. Winer, Phys. Rev. B 41, 12150 (1990)

    Article  CAS  Google Scholar 

  21. G. J. Adriaenssens in Properties of Amorphous Silicon and its Alloys, edited by T. Searle (INSPEC, London, 1998)

    Google Scholar 

  22. V. Nadazdy, R. Durny, I. Thurzo, E. Pincik, A. Nishida, J. Shimizu, M. Kumeda, T. Shimizu, Phys. Rev. B 66, 195211 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported through grants from Ontario Centres of Excellence and Natural Sciences and Engineering Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Kherani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costea, S., Kherani, N.P. & Zukotynski, S. Metastable defect creation in tritiated hydrogenated amorphous silicon and the Staebler–Wronski effect. J Mater Sci: Mater Electron 18 (Suppl 1), 175–182 (2007). https://doi.org/10.1007/s10854-007-9184-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9184-x

Keywords

Navigation