Skip to main content

Advertisement

Log in

Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, YVO4:Bi3+, Eu3+ phosphors have been synthesized by high-temperature solid-state method. The samples were characterized by X-ray powder diffraction, photoluminescence spectra, luminescence lifetime, and GSAS structure refinement. The excitation spectrum of YVO4:Bi3+, Eu3+ monitoring at 622 nm was a broad band with major peak located at 280 nm. It contained the charge transfer from 2p orbit of O2− to 4f orbit of Eu3+ (257 nm) and the absorbing from energy level transition of Bi3+ (1S03P1, 346 nm) and VO4 3− (lA11T2, 286 nm and lA11T1, 320 nm) through gauss fitting. Upon excitation at a wavelength of 280 nm, the major emission peak of YVO4:Bi3+, Eu3+ located at 622 nm (red) was attributed to the electric dipole transition 5D07F2 of Eu3+. The energy transfer mechanism of Bi3+→Eu3+ was also studied to be dipole–quadrupole mechanism of electric multipole interaction, and the critical distance between Eu3+ and Bi3+ was calculated by concentration quenching method. The emission color of YVO4:Bi3+, Eu3+ can be tuned by the energy transfer of ions and the concentration of activator. In a word, the material has a good application prospects in the field of light-emitting diode under ultraviolet excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Buijsse B, Schmidt J, Chan IY et al (1995) Electron spin-echo-detected excitation spectroscopy of manganese-doped Ba3(VO4)2: identification of tetrahedral Mn5+ as the active laser center. Phys Rev B 51(10):6215–6220

    Article  Google Scholar 

  2. Takeshita S, Watanabe T, Isobe T, Sawayama T, Niikura S (2011) Improvement of the photo stability for YVO4:Bi3+, Eu3+ nanoparticles synthesized by the citrate route. Opt Mater 33:323–326

    Article  Google Scholar 

  3. Muhammad R, Iqbal Y, Reaney IM (2015) Structure and microwave dielectric properties of La5−x Sr x Ti4+x Ga1−x O17 ceramics. J Mater Sci 50:350–3516. doi:10.1007/s10853-015-8914-3

    Article  Google Scholar 

  4. Sohn KS, Zeon W, Chang H, Lee SK, Park HD (2002) Combinatorial search for new red phosphors of high efficiency at VUV excitation based on the YRO4 (R = As, Nb, P, V) system. Chem Mater 14:2140–2148

    Article  Google Scholar 

  5. Zhou XC, Zhong LP, Liu QP, Kuang RY, Chen HM (2009) Luminescence properties of bi co-doped and p co-doped Ca3(VO4)2:Eu3+. Inorg Mater 45(3):1295–1298

    Article  Google Scholar 

  6. Levine AK, Palilla FC (1964) A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television. Appl Phys Lett 5:118–120

    Article  Google Scholar 

  7. Qiu KH, Li JF, Li JF, Lu XG, Gong YC, Li JH (2010) Luminescence property of Ca3(VO4)2: Eu3+ dependence on molar ratio of Ca/V and solution combustion synthesis temperature. J Mater Sci 45:5456–5462. doi:10.1007/s10853-010-4598-x

    Article  Google Scholar 

  8. Kang FW, Peng MY, Yang XB, Dong GP, Nie GC, Liang WJ, Xu SH, Qiu JR (2014) Broadly tuning Bi3+ emission via crystal field modulation in solid solution compounds (Y, Lu, Sc)VO4: Bi for ultraviolet converted white LEDs. J Mater Chem C 2:6068–6076

    Article  Google Scholar 

  9. Huang XY, Wang JX, Yu DC, Ye S, Zhang QY, Sun XW (2011) Spectral conversion for solar cell efficiency enhancement using YVO4:Bi3 + , Ln3 + (Ln = Dy, Er, Ho, Eu, Sm, and Yb) phosphors. J Appl Phys 109:113526

    Article  Google Scholar 

  10. Zhao J, Guo CF, Yu J, Yu RJ (2013) Spectroscopy properties of Eu3+ doped Ca9R(VO4)7 (R = Bi, La, Gd and Y) phosphors by sol–gel method. Opt Laser Technol 45:62–68

    Article  Google Scholar 

  11. Xu W, Chen B, Yu W, Zhu YS, Liu T, Xu S, Min XL, Bai X, Song HW (2012) The up-conversion luminescent properties and silver-modified luminescent enhancement of YVO4: Yb3+, Er3+ NPs. Dalton Trans 41:13525–13532

    Article  Google Scholar 

  12. Yan B, Su XQ (2006) Chemical co-precipitation synthesis of luminescent Bi x Y1−x VO4: RE (RE = Eu3+, Dy3+, Er3+) phosphors from hybrid precursors. J Non-cryst Solids 352:3275–3279

    Article  Google Scholar 

  13. Wang GF, Qin WP, Zhang DS, Wang LL, Wei GD, Zhu PF, Kim RJ (2008) Enhanced photoluminescence of water soluble YVO4:Ln3+ (Ln = Eu, Dy, Sm, and Ce) nanocrystals by Ba2+ doping. J Phys Chem C 112:17042–17045

    Article  Google Scholar 

  14. Xu W, Song HW, Yan DT, Zhu HC, Wang Y, Xu S, Bai X, Dong B, Liu YX (2011) YVO4:Eu3 + , Bi3 + UV to visible conversion nano-films used for organic photovoltaic solar cells. J Mater Chem 21:12331–12336

    Article  Google Scholar 

  15. Sun JY, Xian JB, Xia JG, Du HY (2010) Synthesis, structure and luminescence properties of Y(V, P)O4: Eu3+, Bi3+ phosphors. J Lumin 130:1818–1824

    Article  Google Scholar 

  16. Xia ZG, Chen DM, Yang M, Ying T (2010) Synthesis and luminescence properties of YVO4:Eu3+, Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping. J Phys Chem Solids 71:175–180

    Article  Google Scholar 

  17. Mi XY, Sun JC, Zhou P, Zhou HY, Song D, Li K, Shang MM, Lin J (2015) Tunable luminescence and energy transfer properties in Ca8MgLu(PO4)7:Ce3+, Tb3+, Mn2+ phosphors. J Mater Chem C 3:4471–4481

    Article  Google Scholar 

  18. Chen L, Chen KJ, Hu SF, Liu RS (2011) Combinatorial chemistry approach to searching phosphors for white light-emitting diodes in (Gd-Y-Bi-Eu)VO4 quaternary system. J Mater Chem 21:3677–3685

    Article  Google Scholar 

  19. Chen YC, Wu YC, Wang DY, Chen TM (2012) Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4:Bi3+, Eu3+ nanocrystals by a facile hydrothermal process. J Mater Chem 22:7961–7969

    Article  Google Scholar 

  20. Blasse G, Bril A (1968) Investigations on Bi3+-activated phosphors. J Chem Phys 48:217

    Article  Google Scholar 

  21. Takeshita S, Isobe T, Sawayama T, Niikura S (2009) Effects of the homogeneous Bi3 + doping process on photoluminescence properties of YVO4:Bi3 + , Eu3+nanophosphor. J Lumin 129:1067–1072

    Article  Google Scholar 

  22. Chen L, Chen KJ, Lin CC, Chu CI, Hu SF, Lee MH, Liu RS (2010) Combinatorial approach to the development of a single mass YVO4:Bi3+, Eu3+ phosphor with red and green dual colors for high color rendering white light-emitting diodes. J Comb Chem 12:587–594

    Article  Google Scholar 

  23. Chen L, Jiang Y, Zhang G, Wu C, Yang G, Wang C, Li G (2008) Concentration and temperature dependences of YBO3: Bi3+ luminescence under vacuum ultraviolet excitation. Chin Phys Lett 25(5):1884

    Article  Google Scholar 

  24. Chen L, Yang G, Liu J, Shu X, Jiang Y, Zhang GJ (2009) Photoluminescence properties of Eu3+ and Bi3+ in YBO3 host under vacuum ultraviolet/ultraviolet excitation. Appl Phys 105:013513

    Article  Google Scholar 

  25. Ilmer M, Grabmaier BC, Blasse G (1994) Luminescence of Bi3+ in gallate garnets. Chem Mater 6:204

    Article  Google Scholar 

  26. Sun JC, Mi CY, Lei LJ, Pan XY, Chen SY, Wang Z, Bai ZH, Zhang XY (2015) Hydrothermal synthesis and photoluminescence properties of Ca9Eu(PO4)7 nanophosphors. CrystEngComm 17:7888–7895

    Article  Google Scholar 

  27. Mi XY, Shi H, Wang Z, Xie LJ, Zhou HY, Su JG, Lin J (2016) Luminescence properties of M3(VO4)2:Eu3+ (M=Ca, Sr, Ba) phosphors. J Mater Sci 51:3545–3554. doi:10.1007/s10853-015-9674-9

    Article  Google Scholar 

  28. Mi XY, Du K, Huang K, Zhou P, Geng DL, Zhang Y, Shang MM, Lin J (2014) Synthesis and luminescence of Ca9Eu1−x Ln x (VO4)7 (Ln = Y, La, Gd, Lu) phosphors. Mater Res Bull 60:72–78

    Article  Google Scholar 

  29. Sun HC, Pan LK, Zhu G, Piao XQ, Zhang L, Sun Z (2014) Long afterglow Sr4Al14O25: Eu, Dy phosphors as both scattering and down converting layer for CdS quantum dot-sensitized solar cells. Dalton Trans 43:14936–14941

    Article  Google Scholar 

  30. Hara H, Takeshita S, Isobe T, Sawayama T, Niikura S (2013) A unique photo function of YVO4:Bi3 + , Eu3 + nanophosphor: Photoluminescent indication for photochemical decomposition of polyurethane. Mater Sci Eng 178:311–315

    Article  Google Scholar 

  31. Zhao ML, Li GS, Zheng J, Li LP, Yang LS (2012) Fabrication of assembled-spheres YVO4: (Ln3+, Bi3+) towards optically tunable emission. CrystEngComm 14:2062–2070

    Article  Google Scholar 

  32. Chen YM, Wang GX, Shen X, Xu TF, Wang RP, Wu LC, Lu YG, Li JJ, Dai SX, Nie QL (2014) Crystallization behaviors of Zn x Sb100−x thin films for ultralong data retention phase change memory applications. CrystEngComm 16:757

    Article  Google Scholar 

  33. Neeraj S, Kijima N, Cheetham AK (2004) Novel red phosphors for solid state lighting; the system Bi x Ln1−x VO4; Eu3+/Sm3+(Ln = Y, Gd). Solid State Commun 131:65–69

    Article  Google Scholar 

  34. Han LL, Wang YH, Zhang J, Wang YZ (2013) Enhancement of red emission intensity of Ca9Y(VO4)7: Eu3+ phosphor via Bi co-doping for the application to white LEDs. Mater Chem Phys 139:87–91

    Article  Google Scholar 

  35. Zhamu A, Chen GR, Liu CG, Neff D, Fang Q, Yu ZN, Xiong W, Wang YB, Wang XQ, Jang BZ (2012) Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ Sci 5:5701

    Article  Google Scholar 

  36. Hou ZY, Li GG, Lian HZ, Lin J (2012) One-dimensional luminescent materials derived from the electrospinning process: preparation, characteristics and application. J Mater Chem 22:5254

    Article  Google Scholar 

  37. Antipeuko BM, Bataev IM, Ermolaev VL, Lyubimov EI, Privalova TA (1970) Ion-to-ion radiationless transfer of electron excitation energy between rare-earth ions in POCl3–SnCl4. Opt Spectrosc 29:177

    Google Scholar 

  38. Dexter DL, Schulman JA (1954) Theory of concentration quenching in inorganic phosphors. J Chem Phys 22:1063–1071

    Article  Google Scholar 

  39. Blasse G (1969) Energy transfer in oxiidic phosphors. Philips Res Rep 24:131–134

    Google Scholar 

  40. Chen DQ, Yu YL, Huang P, Lin H, Shan ZF, Zeng LW, Yang AP, Wang YS (2010) Color-tunable luminescence for Bi3+/Ln3+:YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light. Phys Chem Chem Phys 12:7775–7778

    Article  Google Scholar 

  41. Li YJ, Quan CX, Zhang ZW, Yang CM (2008) Self-assembled 3D flowerlike Lu2O3 and Lu2O3:Ln3+ (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures: ethylene glycol-mediated hydrothermal synthesis and luminescent properties. J Phys Chem C 112:12777–12785

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Scientific and Technologi cal Department of Jilin Province (Grant Nos. 20130522176JH and 20130102016JC), the National Natural Science Foundation of China (Grant No. 51602027 and 61307118), and the Changchun Science and Technology Bureau (Grant No. 2013045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Mi.

Ethics declarations

Conflict of Interest

Author Liping Lu and Xiaoyun Mi have received research grants from the National Natural Science Foundation of China. Xiaoyun Mi and Zhaohui Bai have received research grants from the Scientific and Technological Department of Jilin Province. Quansheng Liu is a member of the Changchun Science and Technology Bureau. The authors declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Mi, X., Sun, J. et al. Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors. J Mater Sci 52, 782–792 (2017). https://doi.org/10.1007/s10853-016-0375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0375-9

Keywords

Navigation