Skip to main content
Log in

Core–shell rubbery fillers for massive electrical conductivity enhancement and toughening of polystyrene–graphene nanoplatelet composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene nanoplatelets (GNPs) are an attractive additive for polymers to provide electrical conductivity to a composite. If the GNP surface and the polymer are incompatible, the interfaces are weak, resulting in a large drop in the flexural strength and toughness of the composite compared to the native polymer. In the present study, we show that adding core–shell rubbery (CSR) nanoparticles, that have a polyisobutadiene (PIB) core and a thin, polystyrene (PS) compatible shell, to a PS–GNP composite enhances the dispersion of the GNP and suppresses their restacking, increasing the electrical conductivity of the composite by several orders of magnitude. In addition, there is complete recovery of the flexural strength and a large increase in toughness compared to PS samples without fillers. The recovery of the mechanical properties is related to a uniform distribution of the CSR and good binding at the interfaces because of the compatibility of the filler surface with the PS matrix, as well as the rubbery nature of the PIB core. This strategy of using a second filler as both a toughening agent as well as a dispersion aid breaks a commonly encountered tradeoff between electrical and mechanical property enhancement by fillers. It can be deployed for applications where both a high electrical conductivity and excellent mechanical properties of polymer composites are desired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Geim AK (2009) Graphene: Status and Prospects. Science 324:1530–1534

    Article  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The Rise of Graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  3. Rao CNR, Sood AK, Voggu R, Subrahmanyam KS (2010) Some Novel Attributes of Graphene. J Phys Chem Lett 1(2):572–580

    Article  Google Scholar 

  4. Kytopoulos VN (2013) The elastic modulus and the thermal expansion coefficient in particulate composites by a hexaphase model. J Reinf Plast Compos 32:499–510

    Article  Google Scholar 

  5. Nair ABG (2014) N., Joseph, R. Non-linear Viscoelastic Behaviour of Rubber-Rubber Blend Composites and Nanocomposites: effect of Spherical, Layered and Tubular Fillers. Adv Polym Sci 264:85–134

    Article  Google Scholar 

  6. Zhang Z, Tan Y, Wang X, Tan H, Li J (2015) Mechanical behavior and fracture toughness of epoxy composites reinforced with combination of fibrous and spherical nanofillers. Polym Compos 36:2147–2156

    Article  Google Scholar 

  7. Kim H, Abdala A, Macosko CW (2010) Graphene/Polymer Nanocomposites. Macromolecules 43:6515–6530

    Article  Google Scholar 

  8. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    Article  Google Scholar 

  9. Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene Filled Polymer Nanocomposites. J Mater Chem 21:3301–3310. doi:10.1039/C0JM02708A

    Article  Google Scholar 

  10. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    Article  Google Scholar 

  11. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  Google Scholar 

  12. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    Article  Google Scholar 

  13. Wang ZP, Nelson JK, Miao JJ, Linhardt RJ, Schadler LS, Hillborg H, Zhao S (2012) Effect of High Aspect Ratio Filler on Dielectric Properties of Polymer Composites: a Study on Barium Titanate Fibers and Graphene Platelets. Ieee T Dielect El In 19(3):960–967

    Article  Google Scholar 

  14. Chakraborty I, Bodurtha KJ, Heeder NJ, Godfrin MP, Tripathi A, Hurt RH, Shukla A, Bose A (2014) Massive Electrical Conductivity Enhancement of Multilayer Graphene/Polystyrene Composites Using a Nonconductive Filler. ACS Appl Mater Inter 6(19):16472–16475

    Article  Google Scholar 

  15. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  Google Scholar 

  16. Zaeri MM, Ziaei-Rad S, Vahedi A, Karimzadeh F (2010) Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper. Carbon 48(13):3916–3930

    Article  Google Scholar 

  17. Rahman R (2013) The role of graphene in enhancing the stiffness of polymeric material: a molecular modeling approach. J Appl Phys 113(24):243503

    Article  Google Scholar 

  18. Martin-Gallego M, Bernal MM, Hernandez M, Verdejo R, Lopez-Manchado MA (2013) Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur Polym J 49(6):1347–1353

    Article  Google Scholar 

  19. Li WK, Dichiara A, Bai JB (2013) Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos Sci Technol 74:221–227

    Article  Google Scholar 

  20. Kuvardina EV, Novokshonova LA, Lomakin SM, Timan SA, Tchmutin IA (2013) Effect of the graphite nanoplatelet size on the mechanical, thermal, and electrical properties of polypropylene/exfoliated graphite nanocomposites. J Appl Polym Sci 128(3):1417–1424

    Google Scholar 

  21. Khan U, O’Connor I, Gun’ko YK, Coleman JN (2010) The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties. Carbon 48(10):2825–2830

    Article  Google Scholar 

  22. Chen P, Wang Y, Wei T, Meng Z, Jia X, Xi K (2013) Greatly enhanced mechanical properties and heat distortion resistance of poly(l-lactic acid) upon compositing with functionalized reduced graphene oxide. J Mater Chem A 1(32):9028–9032. doi:10.1039/C3TA12060K

    Article  Google Scholar 

  23. Satti A, Larpent P, Gun’ko Y (2010) Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking. Carbon 48(12):3376–3381

    Article  Google Scholar 

  24. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670

    Article  Google Scholar 

  25. Ruoff RS (2009) Graphene-based materials. Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, March 22-26, 2009 PMSE-011

  26. Gouda PSS, Kulkarni R, Kurbet SN, Jawali D (2013) Effects of multi walled carbon nanotubes and graphene on the mechanical properties of hybrid polymer composites. Adv Mater Lett 4(4):261–270 10 pp

    Google Scholar 

  27. Dai J, Lang M (2012) Preparation and mechanical properties of graphene oxide/PMMA and surface-functionalized graphene/PMMA composites. Huaxue Xuebao 70(11):1237–1244

    Google Scholar 

  28. Layek RK, Das AK, Park MJ, Kim NH, Lee JH (2015) Enhancement of physical, mechanical, and gas barrier properties in noncovalently functionalized graphene oxide/poly(vinylidene fluoride) composites. Carbon 81:329–338

    Article  Google Scholar 

  29. Kuila T, Khanra P, Mishra AK, Kim NH, Lee JH (2012) Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Polym Test 31(2):282–289

    Article  Google Scholar 

  30. Yan N, Buonocore G, Lavorgna M, Kaciulis S, Balijepalli SK, Zhan Y, Xia H, Ambrosio L (2014) The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos Sci Technol 102:74–81

    Article  Google Scholar 

  31. Qi X-Y, Yan D, Jiang Z-G, Cao Y-K, Yu Z-Z, Yavari F, Koratkar N (2011) Enhanced Electrical Conductivity in Polystyrene Nanocomposites at Ultra-Low Graphene Content. ACS Appl Mater Inter 3(8):3130–3133

    Article  Google Scholar 

  32. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100

    Google Scholar 

  33. Parameswaran V, Shukla A (2000) Processing and Characterization of a Model Functionally Gradient Material. J Mater Sci 30:21–29. doi:10.1023/A:1004767910762

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Rhode Island Science and Technology Advisory Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Bose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, I., Shukla, A. & Bose, A. Core–shell rubbery fillers for massive electrical conductivity enhancement and toughening of polystyrene–graphene nanoplatelet composites. J Mater Sci 51, 10555–10560 (2016). https://doi.org/10.1007/s10853-016-0275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0275-z

Keywords

Navigation