Skip to main content
Log in

Non-monotonic lattice parameter variation in ball-milled ceria

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-energy ball milling is utilized in creating microstructural changes (such as change in lattice parameter, lattice strain) within micro-ceria, which were quantified using line profile analysis by X-ray diffraction. Crystallite size significantly decreased from 85 to 11 nm when subjected to 4 h of high-energy ball milling, and then remained same with increase in milling duration (up to 16 h of milling). Three different methods, namely Nelson–Riley function, Cohen’s method, and Pawley fitting, were used to calculate the lattice parameter and a lattice expansion from 5.4082 to 5.4147 Å was observed for a duration of 0 up to 12 h. The effect of milling on generation of residual strain and the probability of stacking fault in affecting the lattice parameter are delineated in the current work. Non-monotonic change of lattice parameter with saturation of crystallite size is attributed to the vacancy-induced stresses that generate at inter-crystallite regions and render excessive free volume during high-energy ball milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  Google Scholar 

  2. Zhu W, Tan OK, Jiang JZ (1998) A new model and gas sensitivity of non-equilibrium xSnO2-(1–x)α-Fe2O3 nanopowders prepared by mechanical alloying. J Mater Sci: Mater Electron 9:275–278

    Google Scholar 

  3. Cao W, Tan OK, Zhu W, Jiang B, Reddy CVG (2001) An amorphous-like xα-Fe2O3–(1–x)ZrO2 solid solution system for low temperature resistive-type oxygen sensing. Sens Actuat B 77:421–426

    Article  Google Scholar 

  4. Hu Y, Tan OK, Pan JS, Yao X (2004) A new form of nanosized SrTiO3 material for near-human-body temperature oxygen sensing applications. J Phys Chem B 108:11214–11218

    Article  Google Scholar 

  5. Rogachev AS, Shkodich NF, Vadchenko SG, Baras F, Kovalev DY, Rouvimov S, Nepapushev AA, Mukasyan AS (2013) Influence of the high energy ball milling on structure and reactivity of the Ni + Al powder mixture. J Alloys Compd 577:600–605

    Article  Google Scholar 

  6. Bolokang AS, Phasha MJ (2010) Solid-state transformation in ball milled nickel powder. Mater Lett 64:1894–1897

    Article  Google Scholar 

  7. Ahmad S, Bakar MSA, Muchtar A, Muhamad N, Rahman HA (2012) The effect of milling speed and calcination temperature towards composite cathode LSCF-SDC carbonate. Adv Mater Res 576:220–223

    Article  Google Scholar 

  8. Bakar MSA, Kamaruddin MF, Ahmad S, Rahman HA, Basri H, Muchtar A (2014) Effects of calcination factors on the composite cathode powder LSCF-SDC carbonate by using dry milling. Appl Mech Mater 465–466:167–171

    Google Scholar 

  9. Sen R, Das S, Das K (2011) Microstructural characterization of nanosized ceria powders by X-ray diffraction analysis. Metall Mater Trans A 42:1409–1417

    Article  Google Scholar 

  10. Scardi P, Leoni M, Delhez R (2004) Line broadening analysis using integral breadth methods: a critical review. J Appl Crystallogr 37:381–390

    Article  Google Scholar 

  11. Andreeva D, Ivanov I, Ilieva L, Sobczak JW, Avdeev G (2007) Nanosized gold catalysts supported on ceria and ceria-alumina for WGS reaction: influence of the preparation method. Appl Catal A Gen 333:153–160

    Article  Google Scholar 

  12. Alvarez-Galvan MC, Navarro RM, Rosa F, Briceno Y, Ridao MA (2008) Hydrogen production for fuel cell by oxidative reforming of diesel surrogate: influence of ceria and/or lanthana over the activity of Pt/Al2O3 catalysts. Fuel 87:2502–2511

    Article  Google Scholar 

  13. Coutinho CA, Mudhivarthi SR, Kumar A, Gupta VK (2008) Novel ceria–polymer microcomposites for chemical mechanical polishing. Appl Surf Sci 255:3090–3096

    Article  Google Scholar 

  14. Izu N, Nishizaki S, Itoh T, Shin W, Matsubara I (2007) Output Evaluation of Resistive Oxygen Sensor having Ce0.9Zr0.1O2 Sensing Material and Zr0.8Y0.2O2-.DELTA. Temperature compensating material in model exhaust gas. J Ceramic Soc Jpn 115:688–691

    Article  Google Scholar 

  15. Bi L, Kim HS, Dionne GF, Speakman SA, Bono D, Ross CA (2008) Structural, magnetic, and magneto-optical properties of Co-doped CeO2−δ films. J Appl Phys 103:07D138

    Article  Google Scholar 

  16. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315

    Article  Google Scholar 

  17. Siegel RW (1994) Nanophase materials. VCH, Weinheim

    Google Scholar 

  18. Indris S, Bork D, Heitjans P (2000) Nanocrystalline oxide ceramics prepared by high-energy ball milling. J Mater Synth Process 8:245–250

    Article  Google Scholar 

  19. Kang HS, Kang YC, Koo HY, Ju SH, Kim DY, Hong SK, Sohn JR, Jung KY, Park SB (2006) Nano-sized ceria particles prepared by spray pyrolysis using polymeric precursor solution. Mater Sci Eng, B 127:99–104

    Article  Google Scholar 

  20. Wang AQ, Punchaipetch P, Wallace RM, Golden TD (2003) X-ray photoelectron spectroscopy study of electrodeposited nanostructured CeO2 films. J Vac Sci Technol B 21:1169–1175

    Article  Google Scholar 

  21. Dapiaggi M, Geiger CA, Artioli G (2005) Microscopic strain in synthetic pyrope-grossular solid solutions determined by synchrotron X-ray powder diffraction at 5 K: the relationship to enthalpy of mixing behavior. Am Mineral 90:506–509

    Article  Google Scholar 

  22. Gouadec G, Colomban P (2007) Raman Spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater 53:1–56

    Article  Google Scholar 

  23. Langford JI (1992) Accuracy in powder diffraction II. USG Printing Office, Washington, DC

    Google Scholar 

  24. Chatterjee P, Gupta PS, Sen S (2001) Particle fracture and plastic deformation in vanadium pentoxide powders induced by high energy vibrational ball-mill. Bull Mater Sci 24:173–180

    Article  Google Scholar 

  25. Alleg S, Bentayeb FZ, Bensalem R, Djebbari C, Bessais L, Greneche JM (2008) Effect of the milling conditions on the formation of nanostructured Fe–Co powders. Phys Status Solidi A 205:1641–1646

    Article  Google Scholar 

  26. Bensebaa N, Alleg S, Greneche JM (2005) Phase transformations of mechanically alloyed Fe–Cr–P–C powders. J Alloy Compd 393:194–203

    Article  Google Scholar 

  27. Koster GF, Dimmock JO, Wheeler RG, Statz H (1963) Properties of the thirty-two point groups. MIT Press, Cambridge

    Google Scholar 

  28. Altmann SL, Herzig P (1994) Point-Group theory tables, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  29. Kroumova E, Aroyo MI, Mato JMP, Kirov A, Capillas C, Ivantchev S, Wondratschek H (2003) Bilbao crystallographic server: useful databases and tools for phase-transition studies. Phase Trans 76:155–170

    Article  Google Scholar 

  30. Martínez L, Romána E, de Segovia JL, Poupard S, Creus J, Pedraza F (2011) Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc. Appl Surf Sci 257:6202–6207

    Article  Google Scholar 

  31. Suzuki T, Kosacki I, Anderson HU, Colomban P (2001) Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films. J Am Ceram Soc 84:2007–2014

    Article  Google Scholar 

  32. Sato T, Tateyama S (1982) Temperature dependence of the linewidth of the first-order Raman spectrum for crystalline CeO2. Phys Rev B 26:2257–2260

    Article  Google Scholar 

  33. Shyu JZ, Weber WH, Gandhi HS (1988) Surface characterization of alumina-supported ceria. J Phys Chem 92:4964–4970

    Article  Google Scholar 

  34. Šćepanović M, Grujić-Brojčin M, Dohčević-Mitrović Z, Popović ZV (2010) Investigation of vibrational and electronic properties of oxide nanopowders by spectroscopic methods. J Phys 253:012015

    Google Scholar 

  35. Lee Y, He G, Akey AJ, Si R, Flytzani-Stephanopoulos M, Herman IP (2011) Raman Analysis of Mode Softening in Nanoparticle CeO2−δ and Au-CeO2−δ during CO Oxidation. J Am Chem Soc 133:12952–12955

    Article  Google Scholar 

  36. Schaefer HE, Wurschum R, Birringer R, Gleiter H (1988) Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy. Phys Rev B 38:9545

    Article  Google Scholar 

  37. Petegem SV, Torre FD, Segers D, Swygenhoven HV (2003) Free volume in nanostructured Ni. Scr Mater 48:17–22

    Article  Google Scholar 

  38. Lu K, Zhao YH (1999) Experimental evidences of lattice distortion in nanocrystalline materials. Nanostruct Mater 12:559–562

    Article  Google Scholar 

  39. Kuru Y, Wohlschlogel M, Welzel U, Mittemeijer E (2009) Large excess volume in grain boundaries of stressed, nanocrystalline metallic thin films: Its effect on grain-growth kinetics. J Appl Phys Lett 95:163112

    Article  Google Scholar 

  40. Christian JW (2002) The theory of transformations in metals and alloys, Part 1, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  41. Eshelby JD, Smallman RE, Harris JE (1977) Vacancies ‘76 Proceedings. The Metals Society, London, p 3

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge NICOP grant (Number: N62909-12-1-7080) and DST Grant (Number: SR/S3/ME-0035/2010-(G)) for providing financial support. Advanced Centre for Materials Science (ACMS) at IIT Kanpur is acknowledged for extending high-energy planetary ball mill facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kantesh Balani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Gupta, R. & Balani, K. Non-monotonic lattice parameter variation in ball-milled ceria. J Mater Sci 50, 6349–6358 (2015). https://doi.org/10.1007/s10853-015-9182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9182-y

Keywords

Navigation