Skip to main content
Log in

Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The compositional dependence of the magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 (LPBMO) and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 (LPBMFO) were investigated. Polycrystalline samples were prepared by the standard solid-state reaction method. Temperature-dependent magnetization measurements and Arrott analysis reveal second-order ferromagnetic transitions in both samples with Curie temperature increasing with doping iron from 94 K for LPBMO to 277 K for LPBMFO. Magnetic entropy change \( | {\Delta S_{\text{M}} } | \) was calculated by applying the thermodynamic Maxwell equation to a series of isothermal field-dependent magnetization curves. However, the analysis of the magnetocaloric effect (MCE) using Landau theory of phase transition shows that the contributions to the free energy from the presence of ferromagnetic clusters are strongly influencing the MCE by coupling with the order parameter around the Curie temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Das S, Dey TK (2007) Magnetic entropy change in polycrystalline La1−x K x MnO3 perovskites. J Alloys Compd 440(1–2):30–35

    Article  Google Scholar 

  2. Sheik MM, Sudheendra L, Rao CNR (2004) Magnetic properties of La0.5−x Ln x Sr0.5MnO3 (Ln = Pr, Nd, Gd and Y). J Solid State Chem 177(10):3633–3639

    Article  Google Scholar 

  3. Phan MH, Yu SC (2007) Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater 308(2):325–340

    Article  Google Scholar 

  4. Phan MH, Tian SB, Yu SC, Ulyanov AN (2003) Magnetic and magnetocaloric properties of La0.7Ca0.3−x Ba x MnO3 compounds. J Magn Magn Mater 256(1–3):306–310

    Article  Google Scholar 

  5. Tian SB, Phan MH, Yu SC, HwiHur N (2003) Magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. Physica B 327(2–4):221–224

    Article  Google Scholar 

  6. Pecharsky VK, JrGschneidner KA (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78(23):4494–4497

    Article  Google Scholar 

  7. McMichael RD, Ritter JJ, Shull RD (1993) Enhanced magnetocaloric effect in Gd3Ga5−x Fe x O12. J Appl Phys 73:6946–6948

    Article  Google Scholar 

  8. Földeàki M, Chahine R, Bose TK (1995) Magnetic measurements, a powerful tool in magnetic refrigerator design. J Appl Phys 77(7):3528–3537

    Article  Google Scholar 

  9. von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K (1993) Giant negative magnetoresistance in perovskite like La2/3Ba1/3MnO x ferromagnetic films. Phys Rev Lett 71:2331–2333

    Article  Google Scholar 

  10. Prinz GA (1999) Magnetoelectronic applications. J Magn Magn Mater 200:57–68

    Article  Google Scholar 

  11. Tozri A, Dhahri E, Hlil EK (2010) Effects of vacancy and Na doping on the structural, magnetic and transport properties of La0.8Pb0.1(□/Na)0.1MnO3. J Magn Magn Mater 322(17):2516–2524

    Article  Google Scholar 

  12. Khlifi M, Bejar M, El Sadek O, Dhahri E, Ahmed MA, Hlil EK (2011) Structural, magnetic and magnetocaloric properties of the lanthanum deficient in La0.8Ca0.2−x x MnO3 (x = 0–0.20) manganites oxides. J Alloys Compd 509(27):7410–7415

    Article  Google Scholar 

  13. Cherif R, Hlil EK, Ellouze M, Elhalouani F, Obbade S (2014) Magnetic and magnetocaloric properties of La0.6Pr0.1Sr0.3Mn1−x Fe x O3 (0 ≤ x ≤ 0.3) manganites. J Solid State Chem 215:271–276

    Article  Google Scholar 

  14. Bohigas X, Tejada J, Del Barco E, Zhang XX, Sales M (1998) Tunable magnetocaloric effect in ceramic perovskites. Appl Phys Lett 73(3):390–392

    Article  Google Scholar 

  15. Wang ZM, Ni G, Xu QY, Sang H, Du YW (2001) Magnetic entropy change in perovskite manganites La0.65Nd0.05Ca0.3Mn0.9B0.1O3 (B = Mn, Cr, Fe). J Magn Magn Mater 234(3):371–374

    Article  Google Scholar 

  16. Wen-xu X, Bao-he L, Zheng-nan Q, Han-min J (1999) Effect of Fe doping in La1−x Sr x MnO3. J Appl Phys 86(9):5164–5168

    Article  Google Scholar 

  17. Huang Q, Li ZW, Li J, Ong CK (2001) Effect of Fe doping on high field magnetoresistance and low field magnetoresistance at zero field in polycrystalline La0.7Sr0.3Mn1−x Fe x O3 (x = 0–0.12) thin films. J Appl Phys 89(11):7410–7412

    Article  Google Scholar 

  18. Huang Q, Li ZW, Li J, Ong CK (2001) The magnetic, electrical transport and magnetoresistance properties of epitaxial La0.7Sr0.3Mn1−x Fe x O3 (x = 0–0.20) thin films prepared by pulsed laser deposition. J Phys Condens Matter 13(18):4033–4047

    Article  Google Scholar 

  19. Chang YL, Huang Q, Ong CK (2002) Effect of Fe doping on the magnetotransport properties in Nd0.67Sr0.33MnO3 manganese oxides. J Appl Phys 91(2):789–793

    Article  Google Scholar 

  20. Mostafa AG, Abdel-Khalek EK, Daoush WM, Moustafa SF (2008) Study of some co-precipitated manganite perovskite samples-doped iron. J Magn Magn Mater 320(24):3356–3360

    Article  Google Scholar 

  21. Ahn KH, Wu XW, Liu K, Chien CL (1996) Magnetic properties and colossal magnetoresistance of La(Ca)MnO3 materials doped with Fe. Phys Rev B 54(21):15299–15302

    Article  Google Scholar 

  22. Righi L, Gorria P, Insausti M, Gutierrez J, Barabdiaran JM (1997) Influence of Fe in giant magnetoresistance ratio and magnetic properties of La0.7Ca0.3Mn1−x Fe x O3 perovskite type compounds. J Appl Phys 81(8):5767–5769

    Article  Google Scholar 

  23. Cai JW, Wang C, Shen BG, Zhao JG, Zhan WS (1997) Colossal magnetoresistance of spin-glass perovskite La0.67Ca0.33Mn0.9Fe0.1O3. Appl Phys Lett 71(12):1727–1729

    Article  Google Scholar 

  24. Jin S, McCormack M, Tiefel TH, Ramesh R (1994) Colossal magnetoresistance in La–Ca–Mn–O ferromagnetic thin films (invited). J Appl Phys 76(10):6929–6933

    Article  Google Scholar 

  25. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2(2):65–71

    Article  Google Scholar 

  26. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192(1–2):55–69

    Article  Google Scholar 

  27. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B 25(5):925–946

    Article  Google Scholar 

  28. Liu XJ, Li ZQ, Yu A, Liu ML, Li WR, Li BL, Wu P, Bai HL, Jiang EY (2007) Magnetic, electrical transport and electron spin resonance studies of Fe-doped manganite LaMn0.7Fe0.3O3+δ. J Magn Magn Mater 313(2):354–360

    Article  Google Scholar 

  29. Rao GH, Sun JR, Kattwinkel A, Haupt L, Bärner K, Schmitt E, Gmelin E (1999) Magnetic, electric and thermal properties of La0.7Ca0.3Mn1−x Fe x O3 compounds. Physica B 269(3–4):379–385

    Article  Google Scholar 

  30. Sahu DR, Roul BK, Pramanik P, Huang JL (2008) Synthesis and reactivity in inorganic. Metal-Organic Nano-Metal Chem 38(3):329–334

    Google Scholar 

  31. Boujelben W, Ellouze M, Cheikh-Rouhou A, Madar R, Fuess H (2004) Effect of Fe doping on the structural and magneto transport properties in Pr0.67Sr0.33MnO3 perovskite manganese. Phys Stat Sol (a) 201(7):1410–1415

    Article  Google Scholar 

  32. Ammar A, Zouari S, Cheikh-Rouhou A (2004) Fe doping effects on the structural and magnetic properties in Pr0.5Sr0.5Mn1−x Fe x O3 with 0 ≤ x ≤ 0.3. Phys Stat Sol (c) 1(7):1645–1648

    Article  Google Scholar 

  33. Griffiths RB (1969) Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys Rev Lett 23(1):17–19

    Article  Google Scholar 

  34. Burgy J, Mayr M, Martin-Mayor V, Moreo A, Doggotto E (2001) Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. Phys Rev Lett 87(27):277202–277204

    Article  Google Scholar 

  35. Salamon MB, Lin P, Chun SH (2002) Colossal magnetoresistance is a Griffiths singularity. Phys Rev Lett 88(19):197203–197204

    Article  Google Scholar 

  36. Deisenhofer J, Braak D, Krug von Nidda H-A, Hemberger J, Eremina RM, Ivanshin VA, Balbashov AM, Jug G, Loidl A, Kimura T, Tokura Y (2005) Observation of a Griffiths phase in paramagnetic La1−x Sr x MnO3. Phys Rev Lett 95(25):257202–257204

    Article  Google Scholar 

  37. Jiang W, Zhou XZ, Williams G, Mukovskii Y, Glazyrin K (2007) Is a Griffiths phase a prerequisite for colossal magnetoresistance? Phys Rev Lett 99(17):177203–177204

    Article  Google Scholar 

  38. Banerjee BK (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12(1):16–17

    Article  Google Scholar 

  39. Chen W, Nie LY, Zhong W, Shi YJ, Hu JJ, Li AJ, Du YW (2005) Magnetocaloric effect in Nd doped perovskite La0.7−x Nd x Ba0.3MnO3 polycrystalline near room temperature. J Alloys Compd 395:23–25

    Article  Google Scholar 

  40. Ritter C, Ibarra MR, De Teresa JM, Algarabel PA, Marquina C, Blasco J, Garcia J, Oseroff S, Cheong SW (1997) Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+δ. Phys Rev B 56:8902–8911

    Article  Google Scholar 

  41. Gschneidner KA, Pecharsky VK (2000) Magnetocaloric materials. Annu Rev Mater Sci 30:387–429

    Article  Google Scholar 

  42. Wang Z, Jiang J (2013) Magnetic entropy change in perovskite manganites La0.7A0.3MnO3 La0.7A0.3Mn0.9Cr0.1O3 (A = Sr, Ba, Pb) and Banerjee criteria on phase transition. Solid State Sci 18:36–41

    Article  Google Scholar 

  43. Li L, Nishimura K, Hutchison WD, Mori K (2008) Large magnetocaloric effect in La2/3Ca1/3Mn1−x Si x O3 (x = 0.05–0.20) manganites. J Phys D 41(17):175002-1–175002-4

    Google Scholar 

  44. Amaral JS, Reis MS, Amaral VS, Mendonc TM, Araúnjo JP, Sá MA, Tavares PB, Vieira JM (2005) Magnetocaloric effect in Er- and Eu-substituted ferromagnetic La–Sr manganites. J Magn Magn Mater 290–291:686–689

    Article  Google Scholar 

  45. Amaral VS, Amaral JS (2004) Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials. J Magn Magn Mater 272–276:2104–2105

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Tunisian Ministry of Scientific Research and Technology, School Phelma Grenoble and the Neel Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Cherif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherif, R., Hlil, E.K., Ellouze, M. et al. Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides. J Mater Sci 49, 8244–8251 (2014). https://doi.org/10.1007/s10853-014-8533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8533-4

Keywords

Navigation