Skip to main content
Log in

Influence of heat treatment and fiber orientation on the damage threshold and the fracture behavior of Nextel fiber-reinforced Mullite-SiOC matrix composites analysed by acoustic emission monitoring

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, we elucidate the influence of oxidative heat exposures at 1000 and 1200 °C on an alumina fiber-reinforced polymer-derived ceramic matrix composite containing small residual amounts of carbon. Therefore, we investigated the flexural performance and fracture toughness of on- (0°/90°) and off-axis (45°) reinforced samples. Acoustic emission was used to monitor the internal damage and its progression during loading. At 1000 °C, a moderate reduction of strength and fracture toughness is found while after exposure to 1200 °C a dramatic decrease down to 50 % is observed. For all composites, a reduction of the damaged volume was found after heat treatments indicating a decrease of crack deflection. However, especially at 1000 °C, composites reinforced in 0°/90° direction seemed to be more affected, as no detrimental effect on the mechanical performance was found for the 45° composites. Remarkably, the oxidation-induced silica formation increases the absolute and relative damage thresholds of all composites. A Griffith-like linear relationship between strength and toughness is found. These findings are pivotal for designing and engineering next generation CMCs toward long-term applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Motz G, Schmidt S, Beyer S (2008) The Pip-Process: Precursor Properties and Applications. Ceramic Matrix Composites. Wiley-VCH, Germany

    Google Scholar 

  2. Jones R, Szweda A, Petrak D (1999) Polymer derived ceramic matrix composites. Compos Part A 30(4):569–575. doi:10.1016/s1359-835x(98)00151-1

    Article  Google Scholar 

  3. Colombo P, Mera G, Riedel R, Sorarù GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93(7):1805–1837. doi:10.1111/j.1551-2916.2010.03876.x

    Google Scholar 

  4. Narisawa M (2010) Silicone resin applications for ceramic precursors and composites. Materials 3(6):3518–3536. doi:10.3390/ma3063518

    Article  Google Scholar 

  5. Gerendás M, Cadoret Y, Wilhelmi C, Machry T, Knoche R, Behrendt T, Aumeier T, Denis S, Göring J, Koch D, Tushtev K Improvement of Oxide/Oxide Cmc and Development of Combustor and Turbine Components in the Hipoc Program. In: ASME Turbo Expo 2011, Vancouver, Kanada, 06.-10- Juni 2011 2011. ASME, pp 45460

  6. Gerendás M, Wilhelmi C, Machry T, Knoche R, Werth E, Behrendt T, Koch D, Hofmann S, Göring J, Tushtev K, Volkmann E (2013) Development and Validation of Oxide/Oxide Cmc Combustors within the Hipoc Program. Paper presented at the Proceedings of the ASME Turbo Expo 2013: Power for Land, Sea Air, San Antonio, Texas, USA, 3–7 June 2013

  7. Fischer WP, Ritter H (2012) Ground and Flight Qualification of an Oxide Ceramic Windward-Side Tps. In: 42nd International Conference on Environmental Systems. International Conference on Environmental Systems (Ices). American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2012-3518

  8. Knoche R, Werth E, Weth M, García JG, Wilhelmi C, Gerendás M Design and Development Approach for Gas Turbine Combustion Chambers Made of Oxide Ceramic Matrix Composites. In: Singh D, Salem J, Widjaja S (eds) ICACC2011 Cocoa/Daytona Beach Conference, 2011. Mechanical Properties and Performance of Engineering Ceramics and Composites VI: Ceramic Engineering and Science Proceedings. Wiley Inc., Hoboken, NJ, USA. doi:10.1002/9781118095355.ch7

  9. Volkmann E, Lima Evangelista L, Tushtev K, Koch D, Wilhelmi C, Rezwan K (2013) Oxidation-induced microstructural changes of a polymer-derived nextel™ 610 ceramic composite and impact on the mechanical performance. J Mater Sci 49(2):710–719. doi:10.1007/s10853-013-7752-4

    Article  Google Scholar 

  10. Hoenig S, Klatt E, Frieß M, Martin C, Naji I, Koch D (2012) Influence of fiber fabric density and matrix fillers as well as fiber coating on the properties of oxipol materials. Mech Prop Perform Eng Ceram Compos VII 570:195

    Google Scholar 

  11. Volkmann E, Tushtev K, Koch D, Wilhelmi C, Göring J, Rezwan K (2014) Assessment of Three Oxide/Oxide Ceramic Matrix Composites: Mechanical Performance and Longterm Stability. Composites Part A: Applied Science and Manufacturing submitted

  12. Ríos-Soberanis CR (2011) Acoustic emission technique, an overview as a characterization tool in materials science. J Appl Res Technol 9(3):367–379

    Google Scholar 

  13. Morscher GN, Yun HM, DiCarlo JA (2007) In-plane cracking behavior and ultimate strength for 2d woven and braided melt-infiltrated sic/sic composites tensile loaded in off-axis fiber directions. J Am Ceram Soc 90(10):3185–3193. doi:10.1111/j.1551-2916.2007.01887.x

    Article  Google Scholar 

  14. Luo JJ, Wooh SC, Daniel IM (1995) Acoustic-emission study of failure mechanisms in ceramic-matrix composite under longitudinal tensile loading. J Compos Mater 29(15):1946–1961

    Article  Google Scholar 

  15. Surgeon M, Vanswijgenhoven E, Wevers M, Van Der Biest O (1997) Acoustic emission during tensile testing of sic-fibre-reinforced bmas glass-ceramic composites. Compos Part A 28(5):473–480. doi:10.1016/S1359-835X(96)00147-9

    Article  Google Scholar 

  16. Kostopoulos V, Loutas TH, Kontsos A, Sotiriadis G, Pappas YZ (2003) On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission. NDT and E Int 36(8):571–580

    Article  Google Scholar 

  17. Kim RY, Pagano NJ (1991) Crack initiation in unidirectional brittle-matrix composites. J Am Ceram Soc 74(5):1082–1090

    Article  Google Scholar 

  18. Hamstad M (1986) A review: acoustic emission, a tool for composite-materials studies. Exp Mech 26(1):7–13

    Article  Google Scholar 

  19. Zok FW, Levi CG (2001) Mechanical properties of porous-matrix ceramic composites. Adv Eng Mater 3(1–2):15–23

    Article  Google Scholar 

  20. Keller K, Jefferson G, Kerans R (2005) Oxide–Oxide Composites. In: Bansal N (ed) Handbook of Ceramic Composites. Springer US, pp 377–421. doi:10.1007/0-387-23986-3_16

  21. Siegert GT, Ruggles-Wrenn MB, Baek SS Effects of Environment on Creep Behavior of an Oxide–Oxide Ceramic Composite with ±45° Fiber Orientation at 1200°C. In: Lara-Curio E (ed) Proceedings of the 31st International Conference on Advanced Ceramics and Composites, Daytona Beach, 2007. The American Ceramic Society, pp 163–177

  22. Carelli EAV, Fujita H, Yang JY, Zok FW (2002) Effects of thermal aging on the mechanical properties of a porous-matrix ceramic composite. J Am Ceram Soc 85(3):595–602. doi:10.1111/j.1151-2916.2002.tb00138.x

    Article  Google Scholar 

  23. Keller KA, Mah T-I, Parthasarathy TA, Cooke CM (2000) Fugitive interfacial carbon coatings for oxide/oxide composites. J Am Ceram Soc 83(2):329–336

    Article  Google Scholar 

  24. Weaver JH, Yang J, Zok FW (2008) Control of interface properties in oxide composites via fugitive coatings. J Am Ceram Soc 91(12):4003–4008. doi:10.1111/j.1551-2916.2008.02746.x

    Article  Google Scholar 

  25. ASTM (2003) Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature. vol C1161–02c

  26. Kuntz M (1996) Rißwiderstand Keramischer Faserverbundwerkstoffe. Berichte Aus Der Werkstofftechnik. Shaker Verlag, Aachen

    Google Scholar 

  27. Zok F, Sbaizero O, Hom CL, Evans AG (1991) Mode I fracture resistance of a laminated fiber-reinforced ceramic. J Am Ceram Soc 74(1):187–193. doi:10.1111/j.1151-2916.1991.tb07316.x

    Article  Google Scholar 

  28. Lewis D, Bulik C, Shadwell D (1985) Standardized testing of refractory matrix/ceramic fiber composites. Ceram Eng Sci Proc 8(DK086):507–523

    Article  Google Scholar 

  29. Munz D, Fett T (1999) Ceramics—Mechanical Properties, Failure Behaviour, Materials Selection. vol B 125. Springer-Verlag Berlin Heidelberg New York Tokyo

  30. ASTM (2012) Standard Guide for Mounting Piezoelectric Acoustic Emission Sensors. vol ASTM E650/E650-12

  31. Morscher GN (2004) Stress-dependent matrix cracking in 2d woven sic-fiber reinforced melt-infiltrated sic matrix composites. Compos Sci Technol 64(9):1311–1319

    Article  Google Scholar 

  32. Wevers M (1997) Listening to the sound of materials: acoustic emission for the analysis of material behaviour. NDT and E Int 30(2):99–106

    Article  Google Scholar 

  33. Peters PWM, Daniels B, Clemens F, Vogel WD (2000) Mechanical characterisation of mullite-based ceramic matrix composites at test temperatures up to 1200 °C. J Eur Ceram Soc 20(5):531–535

    Article  Google Scholar 

  34. Lamon J (2001) A micromechanics-based approach to the mechanical behavior of brittle-matrix composites. Compos Sci Technol 61(15):2259–2272

    Article  Google Scholar 

  35. Pampuch R, Sobierski L Reliability Vs. Fracture Toughness of Cmc Featuring Long-Crack Toughness. In: Heinrich JG, Aneziris CG (eds) 10th International Conference of the European Ceramic Society, Berlin, 2007. Göller Verlag Gmbh, Baden Baden, pp 1131–1134

  36. Munro RG, Freiman SW (1999) Correlation of fracture toughness and strength. J Am Ceram Soc 82(8):2246–2248. doi:10.1111/j.1151-2916.1999.tb02069.x

    Article  Google Scholar 

  37. Munro RG, Freiman S, Baker TL (1998) Fracture Toughness data for brittle materials. NASA (19980201181)

  38. He MY, Hutchinson JW (1989) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25(9):1053–1067

    Article  Google Scholar 

  39. Evans AG, Marshall DB (1989) The mechanical behavior of ceramic matrix composites. Acta Metall Mater 37:2567–2583

    Article  Google Scholar 

  40. Curtin WA (1991) Theory of mechanical properties of ceramic-matrix composites. J Am Ceram Soc 74(11):2837–2845

    Article  Google Scholar 

  41. Hild F, Domergue JM, Leckie FA, Evans AG (1994) Tensile and flexural ultimate strength of fiber-reinforced ceramic-matrix composites. Int J Solids Struct 31(7):1035–1045

    Article  Google Scholar 

  42. Haque A, Ahmed L, Ramasetty A (2005) Stress concentrations and notch sensitivity in woven ceramic matrix composites containing a circular hole—an experimental, analytical, and finite element study. J Am Ceram Soc 88(8):2195–2201. doi:10.1111/j.1551-2916.2005.00404.x

    Article  Google Scholar 

  43. Keith WP, Kedward KT (1997) Notched strength of ceramic-matrix composites. Compos Sci Technol 57(6):631–635. doi:10.1016/S0266-3538(97)00007-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank T. C. Schumacher and P. Pringle for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tushtev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2014_8501_MOESM1_ESM.tif

Figure A1: Diffractograms for N610 0/90 for the different material states. The arrow indicates the cristobalite reflex. All measurements were done for equally prepared samples (polished), with the same device and the measurement time was kept constant. (TIFF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkmann, E., Dentel, A., Tushtev, K. et al. Influence of heat treatment and fiber orientation on the damage threshold and the fracture behavior of Nextel fiber-reinforced Mullite-SiOC matrix composites analysed by acoustic emission monitoring. J Mater Sci 49, 7890–7899 (2014). https://doi.org/10.1007/s10853-014-8501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8501-z

Keywords

Navigation