Skip to main content
Log in

Optical properties of metal phthalocyanines

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, optical properties of phthalocyanines of five metals, i.e., cobalt, nickel, iron, copper, and manganese, have been discussed in the energy (E) range of 1.5–4.1 eV. Utilizing the available data of refractive index (n) and extinction coefficient (k) of these materials in the literature, the related optical properties such as the real (ε1), imaginary (ε2) parts of the complex dielectric constant (ε), and reflectivity (R) are calculated. Interpretations for the energies corresponding to the peaks in ε2 are explained in terms of the Penn gap (E P). High-frequency dielectric constant (ε) values corresponding to four models, i.e., the conventional Lorentz model, modified Lorentz model, relaxed Lorentz model, and the dual Lorentz model are used to determine E P. It is found that the E P values corresponding to the conventional and dual Lorentz models are in good agreement with the average of energy peaks in the R-E and the ε2-E spectra. The oscillator energy (E 0) and the dispersion energy (E d) of these materials have been determined utilizing the Wemple–DiDomenico model. The calculated values of (a) E 0 are generally in good agreement with the Penn gap E P, the average of the energy peaks in the R-E and the ε2-E spectra and (b) E d are comparable to those in the literature for CoPc and NiPc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leznoff CC, Lever ABP (1996) Phthalocyanines: properties and applications, vol 4. VCH, New York

    Google Scholar 

  2. Moser FH, Arthur Thomas L (1963) Phthalocyanine compounds. Reinhold Pub. Co, New York

    Google Scholar 

  3. de la Torre G, Claessens CG, Torres T (2007) Chem Commun 2000

  4. Perry JW, Mansour K, Lee IYS et al (1996) Science 273:1533

    Article  CAS  ADS  Google Scholar 

  5. Zhang L, Wang L (2008) J Mater Sci 43(17):5692. doi:10.1007/s10853-008-2826-4

    Article  CAS  ADS  Google Scholar 

  6. Durmuş M, Yeşilot S, Ahsen V (2006) New J Chem 30:675

    Article  Google Scholar 

  7. Guillaud G, Simon J, Germain JP (1998) Coord Chem Rev 180:1433

    Article  Google Scholar 

  8. Fernandes AN, Richardson TH (2008) J Mater Sci 43(4):1305. doi:10.1007/s10853-007-2184-7

    Article  CAS  ADS  Google Scholar 

  9. Alarjah M, Paniwnyk L, Peterson IR, Lorimer JP, Walton DJ (2009) J Mater Sci 44(16):4246. doi:10.1007/s10853-009-3593-6

    Article  CAS  ADS  Google Scholar 

  10. Ozsoz M, Erdem A, Kilinc E, Gokgunnec L (1996) Electroanalysis 8:147

    Article  CAS  Google Scholar 

  11. Sergeyeva TA, Lavrik NV, Rachkov AE, Kazantseva ZI, El’skaya AV (1998) Biosens Bioelectron 13:359

    Article  CAS  PubMed  Google Scholar 

  12. Ravindra NM, Prodan C, Fnu S, Padron I, Sikha SK (2007) JOM 54:37

    Article  Google Scholar 

  13. Pakhomov GL, Pakhomov LG, Travkin VV et al (2010) J Mater Sci 45(7):1854. doi:10.1007/s10853-009-4169-1

    Article  CAS  ADS  Google Scholar 

  14. Guldi DM, Gouloumis A, Vazquez P, Torres T (2002) ChemCommun 2056

  15. Bonnett R (1995) Chem Soc Rev 24:19

    Article  CAS  Google Scholar 

  16. Moser JG (1998) Photodynamic tumor therapy-2nd and 3rd generation photosensitizers. Harwood academic publishers, Amsterdam

    Google Scholar 

  17. Oschner MJ (1997) Photochem Photobiol B: Biol 39:1

    Google Scholar 

  18. Jori G (1996) J Photochem Photobiol B: Biol 36:87

    Article  CAS  Google Scholar 

  19. Gaffo L, Cordeiro MR, Freitas AR et al (2010) J Mater Sci 45(5):1366. doi:10.1007/s10853-009-4094-3

    Article  CAS  ADS  Google Scholar 

  20. Roy MS, Balraju P, Deol YS et al (2008) J Mater Sci 43(16):5551. doi:10.1007/s10853-008-2822-8

    Article  CAS  ADS  Google Scholar 

  21. Known and suspected carcinogens. Theoretical Chemistry Laboratory, Oxford University. http://msds.chem.ox.ac.uk/carcinogens.html. Accessed 30 Oct 2009

  22. Yarmush ML, Thorpe WP, Strong L et al (1993) Crit Rev Therapeut Drug Carrier Syst 10:197

    CAS  Google Scholar 

  23. Heavens OS (1991) Optical properties of thin solid films. Dover, New York

    Google Scholar 

  24. Liu ZT, Kwok HS, Djurisic AB (2004) J Phys D: Appl Phys 37:678

    Article  CAS  ADS  Google Scholar 

  25. Djurisic AB, Kwong CY, Lau TW et al (2002) Opt Commun 205:155

    Article  CAS  ADS  Google Scholar 

  26. Rajesh KR, Menon CS (2005) Eur Phys J B 47:171

    Article  CAS  ADS  Google Scholar 

  27. Ravindra NM, Weeks RA, Kinser DL (1987) Phys Rev B 36:6132

    Article  CAS  ADS  Google Scholar 

  28. Penn DR (1962) Phys Rev 128:2093

    Article  MATH  CAS  ADS  Google Scholar 

  29. Breckenridge RA, Shaw RW Jr, Sher A (1974) Phys Rev B10:2483

    ADS  Google Scholar 

  30. Ravindra NM, Narayan J (1986) J Appl Phys 60:1139

    Article  CAS  ADS  Google Scholar 

  31. Van Vechten JA (1969) Phys Rev 182:891

    Article  ADS  Google Scholar 

  32. Kumar A, Ravindra NM (1982) Phys Rev B 25:2889

    Article  CAS  ADS  Google Scholar 

  33. Jackson JD (1978) Classical electrodyanamics. Wiley, New York

    Google Scholar 

  34. Lyle RE, Lyle GG (1978) Cell Mol Life Sci 34:1653

    Article  CAS  Google Scholar 

  35. Arwin H, Mårtensson J, Jansson R (1992) Appl Opt 31:6707

    Article  ADS  Google Scholar 

  36. Mårtensson J, Arwin H (1991) Thin Solid Films 205:252

    Article  Google Scholar 

  37. Joseph B, Menon CS (2008) E-J Chem 5:86

    Google Scholar 

  38. Varghese AC, Menon CS (2005) Central Eur J Phys 3(1):8

    Article  CAS  ADS  Google Scholar 

  39. Seoudi R, El-Bahy GS, El Sayed ZA (2006) Opt Mater 29:304

    Article  CAS  ADS  Google Scholar 

  40. El-Nahass MM, Farag AAM, Atta AA (2009) Synthetic Metals 159:589

    Article  CAS  Google Scholar 

  41. El-Nahass MM, Farag AAM, Abd El-Rahman KF, Darwish AAA (2005) Opt Laser Technol 37:513

    Article  CAS  ADS  Google Scholar 

  42. Phillips JC (1973) Bonds and bands in semiconductors. Academic, New York

    Google Scholar 

  43. Wemple SH, DiDomenico MD Jr (1971) Phys Rev B 3:1338

    Article  ADS  Google Scholar 

  44. Ravindra NM, Narayan J (1987) J Appl Phys 61:2017

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ravindra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P., Ravindra, N.M. Optical properties of metal phthalocyanines. J Mater Sci 45, 4013–4020 (2010). https://doi.org/10.1007/s10853-010-4476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4476-6

Keywords

Navigation