Skip to main content

Advertisement

Log in

Conservation of a groundwater-dependent mire-dwelling dragonfly: implications of multiple threatening processes

  • REVIEW PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Groundwater-dependent ecosystems and their dependent species are under increasing threat globally. Petalurid dragonflies are one such group. This review highlights processes that threaten the groundwater-dependent mire habitats of Petalura gigantea, a dragonfly with long-lived fossorial larvae. The species is reliant for successful reproduction on areas of emergent seepage, or at least, on a water table that is sufficiently high to cause saturation of the peaty substrate. These microhabitat characteristics are critical for successful oviposition and larval burrow establishment, making the species particularly vulnerable to any lowering of water tables. The effect of any lowering of water tables, due to groundwater abstraction or longwall coal mining, for example, will be compounded by the effects of more intense fire regimes in these mires and by projected climate change. These threatening processes act in conjunction with a range of other anthropogenic threats and are mirrored globally in threats to other groundwater-dependent mire ecosystems and their dependent species, including other petalurid dragonflies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acreman MC, Blake JR, Booker DJ, Harding RJ, Reynard N, Mountford JO, Stratford CJ (2009) A simple framework for evaluating regional wetland ecohydrological response to climate change with case studies from Great Britain. Ecohydrology 2:1–17. doi:10.1002/eco.37

    Article  Google Scholar 

  • Andrushchyshyn OP, Wilson KP, Williams DD (2009) Climate change-predicted shifts in the temperature regime of shallow groundwater produce rapid responses in ciliate communities. Glob Change Biol 15:2518–2538. doi:10.1111/j.1365-2486.2009.01911.x

    Article  Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492. doi:10.1111/j.1461-0248.2011.01610.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Aurecon (2009) Newnes Plateau Shrub Swamp Management Plan: investigation of irregular surface movement within East Wolgan Swamp. Report 7049-010 prepared for Centennial Coal

  • Australian National University (2009) Implications of climate change for Australia’s world heritage properties: a preliminary assessment. A report to the Department of Climate Change and the Department of the Environment, Water, Heritage and the Arts by the Fenner School of Environment and Society, The Australian National University, Canberra

  • Auterives C, Aquilina L, Bour O, Davranche M, Paquereau V (2011) Contribution of climatic and anthropogenic effects to the hydric deficit of peatlands. Hydrol Processes 25:2890–2906. doi:10.1002/hyp.8052

    Article  Google Scholar 

  • Baird IRC (2012) The wetland habitats, biogeography and population dynamics of Petalura gigantea (Odonata: Petaluridae) in the Blue Mountains of New South Wales. PhD thesis, University of Western Sydney. http://handle.uws.edu.au:8081/1959.7/509925

  • Baird IRC (2013) Larval habitat and behaviour of Phenes raptor (Odonata: Petaluridae): a review of current knowledge, with new observations. Int J Odonatol 16:79–91. doi:10.1080/13887890.2012.757723

    Article  Google Scholar 

  • Baird IRC (2014a) Larval burrow morphology and groundwater dependence in a mire-dwelling dragonfly, Petalura gigantea (Odonata: Petaluridae). Int J Odonatol 17:101–121. doi:10.1080/13887890.2014.932312

    Article  Google Scholar 

  • Baird IRC (2014b) Mate guarding and other aspects of reproductive behaviour in Petalura gigantea (Odonata: Petaluridae). Int J Odonatol 17:223–236. doi:10.1080/13887890.2014.979333

    Article  Google Scholar 

  • Baird IRC, Burgin S (2013) An emergence study of Petalura gigantea (Odonata: Petaluridae). Int J Odonatol 16:193–211. doi:10.1080/13887890.2013.798580

    Article  Google Scholar 

  • Barlow AE (1991) Field notes of an urban odonatist. Argia 3:1–4

    Google Scholar 

  • Barrett MD (1996) Identification of significant habitats occupied by the Western Petalura dragonfly, Petalura hesperia, in the south-west of Western Australia. Unpublished report to the Australian Heritage Commission and the Heritage Council of Western Australia, Perth

  • Barrett MD, Williams MR (1998) Distribution of the western Petalura dragonfly Petalura Hesperia Watson in western Australia. Pac Conserv Biol 4:149–154

    Google Scholar 

  • Benson D, Baird IRC (2012) Vegetation, fauna and groundwater interrelations in low nutrient temperate montane peat swamps in the upper Blue Mountains, New South Wales. Cunninghamia 12:267–307. doi:10.7751/cunninghamia.2012.12.021

    Article  Google Scholar 

  • Biber E (2002) Habitat analysis of a rare dragonfly (Williamsonia lintneri) in Rhode Island. Northeast Nat 9:341–352

    Article  Google Scholar 

  • Boulton AJ (2005) Chances and challenges in the conservation of groundwaters and their dependent ecosystems. Aquat Conserv Mar Freshw Ecosyst 15:319–323. doi:10.1002/aqc.712

    Article  Google Scholar 

  • Boulton AJ, Brock MA (1999) Australian freshwater ecology: processes and management. Gleneagles Publishing, Adelaide

    Google Scholar 

  • Breeuwer A, Robroek BJM, Limpens J, Heijmans MMPD, Schouten MGC, Berendse F (2009) Decreased summer water table depth affects peatland vegetation. Basic Appl Ecol 10:330–339. doi:10.1016/j.baae.2008.05.005

    Article  Google Scholar 

  • Bridle KL, Cullen P, Russell M (2003) Peatland hydrology, fire management and Holocene fire regimes in Southwest Tasmanian Blanket Bogs. Nature Conservation Report No. 03/07. Nature Conservation Branch, Department of Primary Industries, Water and Environment, Hobart

  • Burgmer T, Hillebrand H, Pfenninger M (2007) Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151:93–103. doi:10.1007/s00442-006-0542-9

    Article  CAS  PubMed  Google Scholar 

  • Bush AA, Nipperess DA, Duursma DE, Theischinger G, Turak E, Hughes L (2014) Continental-scale assessment of risk to the Australian Odonata from climate change. PLoS ONE 9:e88958. doi:10.1371/journal.pone.0088958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carle FL (1996) Revision of the Austropetaliidae (Anisoptera: Aeshnoidea). Odonatologica 25:231–259

    Google Scholar 

  • Carpenter G (1993) Williamsonia lintneri, a phantom of eastern bogs. Argia 5:2–4

    Google Scholar 

  • Carrera N, Barreal ME, Gallego PP, Briones MJI (2009) Soil invertebrates control peatland C fluxes in response to warming. Funct Ecol 23:637–648. doi:10.1111/j.1365-2435.2009.01560.x

    Article  Google Scholar 

  • Centennial Coal (2014) Springvale Mine Extension Project: State Significant Development 5594. Environmental Impact Statement, vols 1 and 2

  • Chalson JM, Martin HA (2009) A Holocene history of the vegetation of the Blue Mountains, New South Wales. Proc Linn Soc NSW 130:77–109

    Google Scholar 

  • Charman D (2002) Peatlands and environmental change. Wiley, Chichester

    Google Scholar 

  • Chessman BC (2009) Climatic changes and 13-year trends in stream macroinvertebrate assemblages in New South Wales, Australia. Glob Change Biol 15:2791–2802. doi:10.1111/j.1365-2486.2008.01840.x

    Article  Google Scholar 

  • Clarkson BR (1997) Vegetation recovery following fire in two Waikato peatlands at Whangamarino and Moanatuatua, New Zealand. N Z J Bot 35:167–179

    Article  Google Scholar 

  • Clifton C, Evans R (2001) Environmental water requirements of groundwater dependent ecosystems, Environmental Flows Initiative Technical Report Number 2. Commonwealth of Australia, Canberra

    Google Scholar 

  • CoA (2001) Loss of terrestrial climatic habitat caused by anthropogenic emissions of greenhouse gases. Advice to the Minister for the Environment and Heritage from the Threatened Species Scientific Committee on a public nomination of a Key Threatening Process under the Environment Protection and Biodiversity Conservation Act 1999. http://www.environment.gov.au/node/14586. Accessed 25 Nov 2014

  • CoA (2005) Commonwealth listing advice on temperate highlands peat swamps on sandstone. http://www.environment.gov.au/biodiversity/threatened/communities/temperate-highland-peat-swamps.html. Accessed 12 Aug 2008

  • CoA (2009) Alpine Sphagnum bogs and associated fens ecological community listing advice. http://www.environment.gov.au/cgi-bin/sprat/public/publicshowcommunity.pl?id=29&status=Endangered. Accessed 6 Sept 2010

  • CoA (2010) Temperate highland peat swamps on sandstone in community and species profile and threats database. http://www.environment.gov.au/sprat. Accessed 23 Sept 2010

  • CoA (2014) Conservation Advice (including listing advice) for Coastal Upland Swamps in the Sydney Basin Bioregion. http://www.environment.gov.au/biodiversity/threatened/communities/pubs/140-conservation-advice.pdf. Accessed 20 Jan 2015

  • Corbet PS (1999) Dragonflies. Behaviour and Ecology of Odonata. Cornell University Press, Ithaca

    Google Scholar 

  • CSIRO (2007) Climate change in Australia: technical report 2007. CSIRO and the Bureau of Meteorology. http://www.climatechangeinaustralia.gov.au/technical_report.php. Accessed 10 Dec 2009

  • Danielopol DL, Griebler C, Gunatilaka A, Notenboom J (2003) Present state and future prospects for groundwater ecosystems. Environ Conserv 30:104–130. doi:10.1017/S0376892903000109

    Article  CAS  Google Scholar 

  • de Chazal J, Rounsevell MDA (2009) Land-use and climate change within assessments of biodiversity change: a review. Glob Environ Change 19:306–315. doi:10.1016/j.gloenvcha.2008.09.007

    Article  Google Scholar 

  • DECCW (2010a) NSW climate impact profile. The impacts of climate change on the biophysical environment of New South Wales. Department of Environment, Climate Change & Water, Hurstville

    Google Scholar 

  • DECCW (2010b) Review of piezometer monitoring data in Newnes Plateau Shrub Swamps and their relationship with Underground Mining in the Western Coalfield. Unpublished report. Department of Environment, Climate Change and Water, Hurstville

    Google Scholar 

  • Driessen MM, Greenslade P (2004) Effect of season, location and fire on Collembola communities in buttongrass moorlands, Tasmania. Pedobiologia 48:631–642

    Article  Google Scholar 

  • Durance I, Ormerod SJ (2007) Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob Change Biol 13:942–957. doi:10.1111/j.1365-2486.2007.01340.x

    Article  Google Scholar 

  • Essl F, Dullinger S, Moser D, Rabitsch W, Kleinbauer I (2012) Vulnerability of mires under climate change: implications for nature conservation and climate change adaptation. Biodivers Conserv 21:655–669. doi:10.1007/s10531-011-0206-x

    Article  Google Scholar 

  • Ferro ML, Belshe JF (1999) The distribution of Tachopteryx thoreyi (Hagen) (Insecta, Odonata, Anisoptera, Petaluridae) in Missouri. J McNair Cent Achiev Program McCAP Cent Mo Univ 8:17–21

    Google Scholar 

  • Finnamore AT, Marshall SA (1994) Terrestrial arthropods of peatlands, with particular reference to Canada. Mem Entomol Soc Can 169:289

    Google Scholar 

  • Flenner I, Sahlén G (2008) Dragonfly community re-organisation in boreal forest lakes: rapid species turnover driven by climate change? Insect Conserv Diver 1:169–179. doi:10.1111/j.1752-4598.2008.00020.x

    Article  Google Scholar 

  • Friend G (1996) Fire ecology of invertebrates—implications for nature conservation, fire management and future research. In: Fire and biodiversity: the effects and effectiveness of fire management. Biodiversity series, paper no. 8. Biodiversity Unit, Commonwealth Department of Environment, Sport and Territories, Canberra, pp 155–162

  • Fryirs K, Freidman B, Williams R, Jacobsen G (2014) Peatlands in eastern Australia? Sedimentology and age structure of Temperate Highland Peat Swamps on Sandstone (THPSS) in the Southern Highlands and Blue Mountains of NSW, Australia. Holocene 24:1527–1538. doi:10.1177/0959683614544064

    Article  Google Scholar 

  • Gill AM, Woinarski JCZ, York A (1999) Australia’s biodiversity—responses to fire: plants, birds and invertebrates. Biodiversity technical paper, no. 1. Department of the Environment and Heritage, Canberra

  • Gold A, Ramp D, Laffan SW (2011) Potential lantana invasion of the Greater Blue Mountains World Heritage Area. Pac Conserv Biol 17:54–67

    Google Scholar 

  • Greenslade P, Driessen M (1999) The effect of fire on epigaeic arthropods in buttongrass moorland in Tasmania. In: Ponder W, Lunney D (eds) The other 99%. The conservation and biodiversity of invertebrates. Transactions of the Royal Zoological Society of New South Wales, Mosman, pp 82–89

    Google Scholar 

  • Greenslade P, Smith D (2010) Short term effects of wild fire on invertebrates in coastal heathland in southeastern Australia. Pac Conserv Biol 16:123–132

    Google Scholar 

  • Hassall C, Thompson DJ (2008) The effects of environmental warming on Odonata: a review. Int J Odonatol 11:131–153. doi:10.1080/13887890.2008.9748319

    Article  Google Scholar 

  • Hassall C, Thompson DJ, French GC, Harvey IF (2007) Historical changes in the phenology of British Odonata are related to climate. Glob Change Biol 13:933–941. doi:10.1111/j.1365-2486.2007.01318.x

    Article  Google Scholar 

  • Hennessy K et al (2004a) Climate change in New South Wales. Part 2: Projected change in climate extremes. CSIRO, Melbourne

    Google Scholar 

  • Hennessy K, Page C, McInnes K, Jones R, Bathols J, Collins D, Jones D (2004b) Climate change in New South Wales. Part 1: Past climate variability and projected changes in average climate. CSIRO, Melbourne

    Google Scholar 

  • Hickling R, Roy DB, Hill JK, Thomas CD (2005) A northward shift of range margins in British Odonata. Glob Change Biol 11:502–506. doi:10.1111/j.1365-2486.2005.00904.x

    Article  Google Scholar 

  • Holland WN, Benson DH, McRae RHD (1992) Spatial and temporal variation in a perched headwater valley in the Blue Mountains: geology, geomorphology, vegetation, soils and hydrology. Proc Linn Soc NSW 113:271–295

    Google Scholar 

  • Horwitz P, Smith R (2005) Fire and wetland soils and sediments on the Swan Coastal Plain: an introduction. J R Soc West Aust 88:77–79

    Google Scholar 

  • Horwitz P, Sommer B (2005) Water quality responses to fire, with particular reference to organic-rich wetlands and the Swan Coastal Plain: a review. J R Soc West Aust 88:121–128

    Google Scholar 

  • Horwitz P, Pemberton M, Ryder D (1999) Catastrophic loss of organic carbon from a management fire in a peatland in southwestern Australia. In: McComb AJ, Davis JA (eds) Wetlands for the future. Gleneagles Publishing, Adelaide, pp 487–501

    Google Scholar 

  • Hose G (2009) Stygofauna baseline assessment for Kangaloon borefield investigations—Southern Highlands, NSW. Supplementary report—stygofauna molecular studies. Report to Sydney Catchment Authority. Access Macquarie Ltd, North Ryde

  • Hughes L (2003) Climate change and Australia: trends, projections and impacts. Austral Ecol 28:423–443. doi:10.1046/j.1442-9993.2003.01300.x

    Article  Google Scholar 

  • Hunter JT, Bell D (2007) Vegetation of montane bogs in east-flowing catchments of northern New England, New South Wales. Cunninghamia 10:77–92

    Google Scholar 

  • IPCC (2014) Climate Change 2014: synthesis report. http://www.ipcc.ch/report/ar5/. Accessed 29 Dec 2014

  • Johansen OM, Pedersen ML, Jensen JB (2011) Effect of groundwater abstraction on fen ecosystems. J Hydrol 402:357–366. doi:10.1016/j.jhydrol.2011.03.031

    Article  Google Scholar 

  • Johnson PN (2001) Vegetation recovery after fire on a southern New Zealand peatland. N Z J Bot 39:251–267. doi:10.1080/0028825X.2001.9512736

    Article  Google Scholar 

  • Keith DA (1996) Fire-driven extinction of plant populations: a synthesis of theory and review of evidence from Australian vegetation. Proc Linn Soc NSW 116:37–78

    Google Scholar 

  • Keith DA (2004) Ocean shores to desert dunes: the native vegetation of New South Wales and the ACT. Department of Environment and Conservation (NSW), Hurstville

  • Keith DA, McGaw L, Whelan RJ (2002) Fire regimes in Australian heathlands and their effects on plants and animals. In: Bradstock RA, Williams JE, Gill AM (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, pp 199–237

    Google Scholar 

  • Keith DA, Rodoreda S, Holman L, Lemmon J (2006) Monitoring change in upland swamps in Sydney’s water catchments: the roles of fire and rain. Sydney Catchment Authority Special Area Strategic Management Research and Data Program. Project number RD07: long term responses of upland swamps to fire. Final report. Department of Environment and Conservation, Hurstville

  • Keith DA, Rodoreda S, Bedward M (2010) Decadal change in wetland—woodland boundaries during the late 20th century reflects climatic trends. Glob Change Biol 16:2300–2306. doi:10.1111/j.1365-2486.2009.02072.x

    Article  Google Scholar 

  • Keith DA, Elith J, Simpson CC (2014) Predicting distribution changes of a mire ecosystem under future climates. Divers Distrib 20:440–454. doi:10.1111/ddi.12173

    Article  Google Scholar 

  • Kirkpatrick JB, Dickinson KJM (1984) The impact of fire on Tasmanian alpine vegetation and soils. Aust J Bot 32:613–629. doi:10.1071/BT9840613

    Article  Google Scholar 

  • Kløve B et al (2014) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518:250–266. doi:10.1016/j.jhydrol.2013.06.037

    Article  Google Scholar 

  • Kodela PG, Sainty GR, Bravo FJ, James TA (2001) Wingecarribee Swamp flora survey and related management issues. Unpublished report to Sydney Catchment Authority, New South Wales

  • Korkeamäki E, Suhonen J (2002) Distribution and habitat specialization of species affect local extinction in dragonfly Odonata populations. Ecography 25:459–465. doi:10.1034/j.1600-0587.2002.250408.x

    Article  Google Scholar 

  • Krogh M (2007) Management of longwall coal mining impacts in Sydney’s southern drinking water catchments. Australas J Environ Manag 14:155–165. doi:10.1080/14486563.2007.9725163

    Article  Google Scholar 

  • Krogh M (2011) Hydrology of Upland Swamps on the Woronora Plateau: Environmental Trust Grant 2011/RD/0028. Progress report 2. NSW Office of Environment and Heritage, Sydney

  • Krogh M (2012) Assessment of impacts over Dendrobium Mine. Final report. NSW Office of Environment and Heritage, Hurstville

  • MacKay H (2006) Protection and management of groundwater-dependent ecosystems: emerging challenges and potential approaches for policy and management. Aust J Bot 54:231–237. doi:10.1071/BT05047

    Article  Google Scholar 

  • Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20:538–548. doi:10.1111/j.1523-1739.2006.00364.x

    Article  PubMed  Google Scholar 

  • Maltby E, Legg CJ, Proctor MCF (1990) The ecology of severe moorland fire on the North York Moors: effects of the 1976 fires, and subsequent surface and vegetation development. J Ecol 78:490–518

    Article  Google Scholar 

  • Marshall B (2005) Groundwater: lifeblood of the environment. Blue Mountains Conserv Soc, Wentworth Falls

    Google Scholar 

  • Matushkina NA, Klass K-D (2011) Morphology of female external genitalia in Phenes raptor (Odonata: Petaluridae). Int J Odonatol 14:199–215. doi:10.1080/13887890.2011.607735

    Article  Google Scholar 

  • Monroe EM, Britten HB (2014) Conservation in Hine’s sight: the conservation genetics of the federally endangered Hine’s emerald dragonfly, Somatochlora hineana. J Insect Conserv 18:353–363. doi:10.1007/s10841-014-9643-7

    Article  Google Scholar 

  • Moore PD (2002) The future of cool temperate bogs. Environ Conserv 29:3–20. doi:10.1017/S0376892902000024

    Article  CAS  Google Scholar 

  • Morrison DA (2002) Effects of fire intensity on plant species composition of sandstone communities in the Sydney region. Austral Ecol 27:433–441. doi:10.1046/j.1442-9993.2002.01197.x

    Article  Google Scholar 

  • Morrison DA, Cary GJ, Pengelly SM, Ross DG, Mullins BJ, Thomas CR, Anderson TS (1995) Effects of fire frequency on plant species composition of sandstone communities in the Sydney region: inter-fire interval and time-since-fire. Aust J Ecol 20:239–247. doi:10.1111/j.1442-9993.1995.tb00535

    Article  Google Scholar 

  • New T, Yen A, Sands D, Greenslade P, Neville P, York A, Collett N (2010) Planned fires and invertebrate conservation in south east Australia. J Insect Conserv 14:567–574. doi:10.1007/s10841-010-9284-4

    Article  Google Scholar 

  • Nicol C, Merrick NP, Akhter N (2014) End-of-Panel Groundwater Assessment for Dendrobium Longwall 9 (Area 3B). Report prepared for Illawarra Coal (project number: BHP003, report: HC2014/015). HydroSimulations, Wollongong

  • NSW Government (2002) The NSW State Groundwater Dependent Ecosystems Policy. Department of Land and Water Conservation and the State Groundwater Policy Working Group, Sydney

  • NSW Department of Planning and Environment (2014) Secretary’s Environmental Assessment of Russel Vale Colliery Underground Expansion Project (MP 09-0013). http://majorprojects.planning.nsw.gov.au/index.pl?action=view_job&job_id=3448. Accessed 29 Jan 2015

  • NSWSC (1998) Giant dragonfly—endangered species listing. NSW Scientific Committee final determination. http://www.environment.nsw.gov.au/determinations/GiantDragonflyEndSpListing.htm. Accessed 13 Aug 2008

  • NSWSC (2000a) Anthropogenic climate change. NSW Scientific Committee Key Threatening Process final determination. http://www.environment.nsw.gov.au/threatenedspecies/HumanClimateChangeKTPListing.htm. Accessed 20 Aug 2009

  • NSWSC (2000b) High frequency fire resulting in the disruption of life cycle processes in plants and animals and loss of vegetation structure and composition. NSW Scientific Committee Key Threatening Process final determination. http://www.environment.nsw.gov.au/threatenedspecies/EcologicalConsequencesFiresKTPListing.htm. Accessed 13 Aug 2008

  • NSWSC (2004) Montane Peatlands and Swamps of the New England Tableland, NSW North Coast, Sydney Basin, South East Corner, South Eastern Highlands and Australian Alps bioregions—endangered ecological community listing. NSW Scientific Committee final determination. http://www.environment.nsw.gov.au/determinations/MontanePeatlandsEndSpListing.htm. Accessed 13 Aug 2008

  • NSWSC (2005a) Alteration of habitat following subsidence due to longwall mining. NSW Scientific Committee Key Threatening Process final determination. http://www.environment.nsw.gov.au/determinations/LongwallMiningKtp.htm. Accessed 29 May 2005

  • NSWSC (2005b) Newnes Plateau Shrub Swamp in the Sydney Basin Bioregion—endangered ecological community listing. NSW Scientific Committee final determination. http://www.environment.nsw.gov.au/determinations/NewnesPlateauShrubSwampEndSpListing.htm. Accessed 13 Aug 2008

  • NSWSC (2007a) Blue Mountains Swamps in the Sydney Basin Bioregion—vulnerable ecological community listing. NSW Scientific Committee final determination. http://www.environment.nsw.gov.au/determinations/BlueMountainsSwampsVulnerableEcologicalCommunity.htm. Accessed 7 Aug 2008

  • NSWSC (2007b) Petalura gigantea—endangered species listing amendment. NSW Scientific Committee determination to add Petalura litorea to Part 1 of Schedule 1 (Endangered species) of the Threatened Species Conservation Act. http://www.environment.nsw.gov.au/listings/PetaluraGiganteaAmendment.htm. Accessed 13 Aug 2008

  • NSWSC (2012) Coastal Upland Swamp in the Sydney Basin Bioregion—endangered ecological community listing. NSW Scientific Committee—final determination. http://www.environment.nsw.gov.au/determinations/coastaluplandswampfd.htm. Accessed 19 Nov 2014

  • Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297. doi:10.1016/j.biocon.2003.12.008

    Article  Google Scholar 

  • Parish F, Sirin A, Charman D, Joosten H, Minayeva T, Silvius M, Stringer L (eds) (2008) Assessment on peatlands, biodiversity and climate change: main report. Global Environment Centre and Wetlands International, Kuala Lumpurs

    Google Scholar 

  • Pemberton M (2005) Australian peatlands: a brief consideration of their origin, distribution, natural values and threats. J R Soc West Aust 88:81–89

    Google Scholar 

  • Ramp D, Chapple R (2010) Managing for ecosystem change in the GBMWHA: final report. ARC Project LP774833. University of NSW and Blue Mountains World Heritage Institute, Kensington

  • Rosenberg DM, Danks HV (1987) Aquatic insects of peatlands and marshes in Canada. Mem Entomol Soc Can 140:174

    Google Scholar 

  • Rosset V, Oertli B (2011) Freshwater biodiversity under climate warming pressure: idsentifying the winners and losers in temperate standing waterbodies. Biol Conserv 144:2311–2319. doi:10.1016/j.biocon.2011.06.009

    Article  Google Scholar 

  • Rosset V, Lehmann A, Oertli B (2010) Warmer and richer? Predicting the impact of climate warming on species richness in small temperate waterbodies. Glob Change Biol 16:2376–2387. doi:10.1111/j.1365-2486.2010.02206.x

    Article  Google Scholar 

  • Rutledge S, Campbell DI, Baldocchi D, Schipper LA (2010) Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Glob Change Biol 16:3065–3074. doi:10.1111/j.1365-2486.2009.02149.x

    Google Scholar 

  • Rydin H, Jeglum JK (2013) The biology of peatlands, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schorr M, Paulson D (2014) World Odonata list. Slater Museum of Natural History, University of Puget Sound, Tacoma. http://www.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/world-odonata-list/. Accessed 11 June 2014

  • Schreider SY, Smith DI, Jakeman AJ (2000) Climate change impacts on urban flooding. Clim Change 47:91–115. doi:10.1023/A:1005621523177

    Article  Google Scholar 

  • Semeniuk V, Semeniuk CA (2005) Wetland sediments and soils on the Swan Coastal Plain, southwestern Australia: types, distribution, susceptibility to combustion, and implications for fire management. J R Soc West Aust 88:91–120

    Google Scholar 

  • Serov P, Kuginis L, Williams JP (2012) Risk assessment guidelines for groundwater dependent ecosystems, volume 1—The conceptual framework. Department of Primary Industries, NSW Office of Water, Sydney

    Google Scholar 

  • Shearer JC (1997) Natural and anthropogenic influences on peat development in Waikato/Hauraki Plains restiad bogs. J R Soc N Z 27:295–313

    Article  Google Scholar 

  • Stricker JS, Wall CA (1995) Wetlands of the Nepean–Hawkesbury Catchment. Sydney Water Corporation, Sydney

    Google Scholar 

  • Suhonen J, Hilli-Lukkarinen M, Korkeamäki E, Kuitunen M, Kullas J, Penttinen J, Salmela J (2010) Local extinction of dragonfly and damselfly populations in low- and high-quality habitat patches. Conserv Biol 24:1148–1153. doi:10.1111/j.1523-1739.2010.01504.x

    Article  PubMed  Google Scholar 

  • Suhonen J, Korkeamäki ESA, Salmela J, Kuitunen M (2014) Risk of local extinction of Odonata freshwater habitat generalists and specialists. Conserv Biol 28:783–789. doi:10.1111/cobi.12231

    Article  PubMed  Google Scholar 

  • Svihla A (1984) Notes on the habits of Tanypteryx hageni Selys in the Olympic Mountains, Washington, U.S.A. Tombo 27:23–25

    Google Scholar 

  • Taketo A (1958) Discovery of the pit-dwelling larva of Tanypteryx pryeri Selys (Petaluridae). Tombo 1:20–21 (in Japanese, with English summary)

    Google Scholar 

  • Taketo A (1971) Studies on the life history of Tanypteryx pryeri Selys (Odonata: Petaluridae) 2. Habitat and habit of nymph. Kontyû 39:299–310 (in Japanese, with English summary)

    Google Scholar 

  • Taranto M, Downe J, Coates F, Oates A (2004) Recovery of Montane Swamp Complex after bushfires in north-east Victoria 2003. Arthur Rylah Institute for Environmental Research technical report series no. 152. Department of Sustainability and Environment, Heidelberg

    Google Scholar 

  • Thackway R, Cresswell ID (eds) (1995) An interim biogeographic regionalisation for Australia: a framework for establishing the national system of reserves, version 4.0. Australian Nature Conservation Agency, Canberra

    Google Scholar 

  • Theischinger G (1999) A new species of Petalura Leach from south-eastern Queensland (Odonata: Petaluridae). Linzer biol Beitr 31:159–166

    Google Scholar 

  • Theischinger G (2001) Habitat mapping and distribution survey for the giant dragonfly (Petalura gigantea) in the Blue Mountains Region. Unpublished report to the NSW National Parks and Wildlife Service

  • Theischinger G, Endersby I (2009) Identification guide to the Australian Odonata. Department of Environment, Climate Change and Water NSW, Hurstville

    Google Scholar 

  • Thomas CD et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Timmins SM (1992) Wetland vegetation recovery after fire: Eweburn Bog, Te Anau, New Zealand. N Z J Bot 30:383–399. doi:10.1080/0028825X.1992.10412918

    Article  Google Scholar 

  • Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond Ser B: Biol Sci 270:467–473. doi:10.1098/rspb.2002.2246

    Article  CAS  Google Scholar 

  • Trueman JWH (2000) Survey for Petalura gigantea Leach (Giant Dragonfly) in New South Wales: 1999–2000 flight season. Unpublished report to NSW National Parks and Wildlife Service

  • Valley S (2000) Some interesting observations of Tanypteryx hageni. Argia 12:9

    Google Scholar 

  • Von Ellenrieder N (2005) Taxonomy of the South American genus Phyllopetalia (Odonata: Austropetaliidae). Int J Odonatol 8:311–352

    Article  Google Scholar 

  • Walker J, Smentowski J (2003) Tachopteryx thoreyi (Hagen), Somatochlora tenebrosa (Say) and S. heneana Williamson—observations from Missouri. Argia 15:6–11

    Google Scholar 

  • Walsh NG, McDougall KL (2004) Progress in the recovery of the flora of treeless subalpine vegetation in Kosciusko National Park after the 2003 fires. Cunninghamia 8:439–452

    Google Scholar 

  • Ware JL et al (2014) The petaltail dragonflies (Odonata: Petaluridae): mesozoic habitat specialists that survive to the modern day. J Biogeogr 41:1291–1300. doi:10.1111/jbi.12273

    Article  Google Scholar 

  • Wheeler BD (1999) Water and plants in freshwater wetlands. In: Baird AJ, Wilby RL (eds) Eco-hydrology: plants and water in terrestrial and aquatic environments. Routledge, London, pp 127–180

    Google Scholar 

  • Whinam J (1995) Effects of fire on Tasmanian Sphagnum peatlands. Paper presented at the Bushfire ‘95: presented papers, Australian Bushfire conference, 27–30 Sept 1995, Hobart

  • Whinam J, Hope GS (2005) The peatlands of the Australasian region. In: Steiner GM (ed) Moore: von Sibirien bis Feuerland—Mires: from Siberia to Tierra del Fuego. Biologiezentrum der Oberoesterreichischen Landesmuseen Neue Serie 35, Linz, Austria, pp 397–434

  • Whinam J, Barmuta LA, Chilcott N (2001) Floristic descriptions and environmental relationships of Tasmanian Sphagnum communities and their conservation management. Aust J Bot 49:673–685. doi:10.1071/BT00095

    Article  Google Scholar 

  • Whittington PN, Price JS (2006) The effects of water table draw-down (as a surrogate for climate change) on the hydrology of a fen peatland, Canada. Hydrol Processes 20:3589–3600. doi:10.1002/hyp.6376

    Article  CAS  Google Scholar 

  • Williams PR, Clarke PJ (2006) Fire history and soil gradients generate floristic patterns in montane sedgelands and wet heaths of Gibralter Range National Park. Proc Linn Soc NSW 127:27–38

    Google Scholar 

  • Wilson RJ, Davies ZG, Thomas CD (2007) Insects and climate change: processes, patterns and implications for conservation. In: Stewart AJA, New TR, Lewis OT (eds) Insect conservation biology. CABI, Oxfordshire

    Google Scholar 

  • Winter TC (2000) The vulnerability of wetlands to climate change: a hydrologic landscape perspective. J Am Water Resour Assoc 36:305–311. doi:10.1111/j.1752-1688.2000.tb04269.x

    Article  Google Scholar 

  • Wolfe LS (1953) A study of the genus Uropetala Selys (Order Odonata) from New Zealand. Trans R Soc N Z 80:245–275. http://rsnz.natlib.govt.nz/volume/rsnz_280/rsnz_280_203_003760.html

  • York A (1999) Long-term effects of frequent low-intensity burning on the abundance of litter-dwelling invertebrates in Coastal Blackbutt forests of southeastern Australia. J Insect Conserv 3:191–199. doi:10.1023/A:1009643627781

    Article  Google Scholar 

  • Young ARM (1982) Upland swamps (dells) on the Woronora Plateau. PhD thesis. University of Wollongong

  • Young RW, Wray RAL (2000) The geomorphology of sandstones in the Sydney region. In: McNally GH, Franklin BJ (eds) Sandstone City: Sydney’s dimension sandstone and other sandstone geomaterials: proceedings of a symposium held on 7 July 2000. Geological Society of Australia, Springwood

  • Zaller JG, Caldwell MM, Flint SD, Ballaré CL, Scopel AL, Sala OE (2009) Solar UVB and warming affect decomposition and earthworms in a fen ecosystem in Tierra del Fuego, Argentina. Glob Change Biol 15:2493–2502. doi:10.1111/j.1365-2486.2009.01970.x

    Article  Google Scholar 

  • Zoltai SC, Morrissey LA, Livingston GP, de Groot WJ (1998) Effects of fires on carbon cycling in North American boreal peatlands. Environ Rev 6:13–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mike Ferro, Günther Theischinger, John Trueman, Steve Valley and Tim Vogt are thanked for sharing their observations of petalurids. Sarsha Gorissen, Martin Krogh, Günther Theischinger, Ann Young and two anonymous reviewers are also thanked for their comments on the manuscript which have improved the paper. Ahamad Sherieff and the NSW Office of Environment and Heritage are thanked for map preparation. This study was undertaken as part of doctoral research which was supported by a Western Sydney University Postgraduate Research Award and an Abel Ecology study grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. C. Baird.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baird, I.R.C., Burgin, S. Conservation of a groundwater-dependent mire-dwelling dragonfly: implications of multiple threatening processes. J Insect Conserv 20, 165–178 (2016). https://doi.org/10.1007/s10841-016-9852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-016-9852-3

Keywords

Navigation