Skip to main content
Log in

Anodic dissolution of vanadium in molten LiCl–KCl–TiCl2

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The mechanism of anodic dissolution of pure vanadium in a titanium-enriched alkali chloride molten salt was investigated to determine whether it can be used as an ion source for a continuous Ti–V alloy deposition process. This study represents the first step towards the preparation of ternary Ti–Al–V alloys. Cyclic voltammetry as well electrochemical impedance spectroscopy (EIS) was performed and potentials for dissolution experiments were determined. Additionally, the influence of anode morphologies on the dissolution process, as a consequence of pre-treatment, was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results indicate that anodic vanadium dissolution is possible, but hindered by the electroless formation of a thin titanium layer. Additionally, a secondary reaction, namely the oxidation of Ti2+ ions, takes place, lowering the current efficiency of the process. Morphology investigations revealed the risk of grain detachment (material loss) from the vanadium electrode, which is critical in direct dissolution, whereas under indirect dissolution conditions, passivation impedes the controlled process. Thus, electrolysis is best carried out with coarse-grained vanadium electrodes in the direct dissolution range.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Donachie MJ (2000) Titanium: a technical guide, 2nd edn. ASM International, Materials Park

  2. Leyens C, Hausmann J, Kumpfert J (2003) Continuous fiber reinforced titanium matrix composites: fabrication, properties, and applications. Adv Eng Mater 5(6): 399–410. doi:10.1002/adem.200310093

    Article  CAS  Google Scholar 

  3. Ward-Close CM, Chandrasekaran L, Robertson JG, Godfrey SP, Murgatroyd DP (1999) Advances in the fabrication of titanium metal matrix composite. Mater Sci Eng A 263(2):314–318. doi:10.1016/S0921-5093(98)01162-9

    Article  Google Scholar 

  4. Gofrey TMT, Goodwin PS, Ward-Close CM (2000) Titanium particulate metal matrix composites—Reinforcement, production methods and mechanical properties. Adv Eng Mater 2(3):85–91. doi:10.1002/(SICI)1527-2648(200003)2:3<85:AID-ADEM85>3.0.CO;2-U

    Article  Google Scholar 

  5. Gussone JG, Hausmann JM (2011) Deposition of titanium on SiC fibres from chloride melts. J Appl Electrochem 41(6):657–662. doi:10.1007/s10800-011-0284-1

    Article  CAS  Google Scholar 

  6. Vassel A (1999) Continuous fibre reinforced titanium and aluminium composites: a comparison. Mater Sci Eng A 263(2):305–313. doi:10.1016/S0921-5093(98)01161-7

    Article  Google Scholar 

  7. Gussone JG (2012) Production of titanium matrix composites by electrolytic deposition of titanium on reinforcing fibers. Dissertation, RWTH Aachen University (in German)

  8. Rolland WK (1987) Electrodeposition of titanium from alkali chloride melts contining di- and tri-valent titanium chloride. Dissertation, NTNU Trondheim

  9. Haarberg GM, Rolland W, Sterten A, Thonstad J (1993) Electrodeposition of titanium from chloride melts. J Appl Electrochem 23(3). doi:10.1007/BF00241912

  10. Lantelme F, Kuroda K, Barhoun A (1998) Electrochemical and thermodynamic properties of titanium chloride solutions in various alkali chloride mixtures. Electrochim Acta 44(2–3):421–431. doi:10.1016/S0013-4686(98)00168-6

    Article  CAS  Google Scholar 

  11. Girginov A, Tzvetkoff TZ, Bojinov M (1995) Electrodeposition of refractory metals (Ti, Zr, Nb, Ta) from molten salt electrolytes. J Appl Electrochem 25(11):993–1003. doi:10.1007/BF00241947

    Article  CAS  Google Scholar 

  12. Haarberg GM, Kjos OS, Martinez AM, Osen KS., Skybakmoen E, Dring K (2010) Electrochemical behavior of dissolved titanium species in molten salts. In: 218th ECS meeting. ECS, pp 167–173

  13. Popov BN, Kimble MC, White RE, Wendt H (1991) Electrochemical behaviour of titanium(II) and titanium(III) compounds in molten lithium chloride/potassium chloride eutectic melts. J Appl Electrochem 21(4):351–357. doi:10.1007/BF01020221

    Article  CAS  Google Scholar 

  14. Zhu X, Wang Q, Song J et al (2014) The equilibrium between metallic titanium and titanium ions in LiCl–KCl melts. J Alloy Compd 587:349–353. doi:10.1016/j.jallcom.2013.09.151

    Article  CAS  Google Scholar 

  15. Song J, Wang Q, Zhu X et al (2014) Thermodynamic properties of different titanium ions in fused LiCl–KCl eutectic. In: Neelameggham NR, Alam S, Oosterhof H et al (eds) Rare metal technology 2014. Wiley, Hoboken, pp 133–138

    Chapter  Google Scholar 

  16. Voleinik VV, Kunaev AM (1963) Anodic polarisation of vanadium in chloride melts. Vestnik Akademii Nauk Kazachskoj SSR 19(7):41–48 (in Russian)

    CAS  Google Scholar 

  17. Lei KPV, Sullivan TA (1971) Electrorefining of vanadium prepared by carbothermic reduction of V2O5. Metall Mater Trans B 2(8):2312–2314. doi:10.1007/BF02917579

    Article  CAS  Google Scholar 

  18. Lei KPV, Sullivan TA (1968) High-purity vanadim. J Less Common Met 14(1):145–147. doi:10.1016/0022-5088(68)90212-9

    Article  CAS  Google Scholar 

  19. Sullivan TS (1965) Electrorefining vanadium. J Met 17:45–48

    CAS  Google Scholar 

  20. Lei KP (1967) An electrolytic process for producing ductile vanadium. U.S. Department of Interior Bureau of Mines, Washington DC

  21. Baker DH, Ramsdell JD (1960) Electrolytic vanadium and its properties. J Electrochem Soc 107(12):985–989

    Article  CAS  Google Scholar 

  22. Molina R (1961) Chemical properties of some elements in eutectic molten lithium chloride-potassium chloride. Dissertation, University of Paris (in French)

  23. Gruen DM, McBeth RL (1962) Absorption Spectra of the II, III, IV and V oxidation states of vanadium in LiCl–KCl eutectic. Octahedral-tetrahedral transformations of V(II) and V(III). J Phys Chem 66(1):57–65. doi:10.1021/j100807a012

    Article  Google Scholar 

  24. Chernyshov MV, Polovov IB, Volkovich VA, Vasin BD, Rebrin OI, Vinogradov KV, Griffiths TR (2010) Electronic absorption spectra of vanadium species in halide melts. In: 218th ECS meeting. ECS, pp 287–296

  25. Polovov IB, Volkovich VA, Shipulin SA, Maslov SV, Khokhryakov AA, Vasin BD, Griffiths TR, Thied RC (2003) Erratum to “Chemistry of vanadium chlorides in molten salts: an electronic absorption spectroscopy study”. J Mol Liq 105(1):105–116. doi:10.1016/S0167-7322(03)00025-4

    Article  CAS  Google Scholar 

  26. Polovov IB, Tray ME, Chernyshov MV, Volkovich VA, Vasin BD, Rebrin OI (2014) Electrode processes in vanadium-containing chloride melts. In: Gaune-Escard M, Haarberg GM (eds) Molten salts chemistry and technology. Wiley, Hoboken, pp 257–281

    Chapter  Google Scholar 

  27. Tripathy PK, Sehra JC, Bose DK, Singh RP (1996) Electrodeposition of vanadium from a molten salt bath. J Appl Electrochem 26(8):887–890. doi:10.1007/BF00683752

    Article  CAS  Google Scholar 

  28. Polovov IB, Vasin BD, Abakumov AV, Rebrin OI, Chernyshov MV, Volkovich VA, Griffiths TR (2006) Thermodynamics of the formation of vanadium(II) complexes in chloride melts. In: 210th ECS Meeting, Cancun, Mexico

  29. Chernyshov MV, Polovov IB, Nechkin GA, Volkovich VA, Rebrin OI, Rylov AN (2008) Vanadium electrorefining in NaCl–KCl based melts. In: Proceedings of 2008 joint symposium on molten salts, pp 752–756

  30. Kazakova OS, Kuznetsov SA (2013) Electrochemical behavior and electrorefining of vanadium in melts containing titanium salts. ECS Trans 50(11): 181–190. doi:10.1149/05011.0181ecst

    Article  Google Scholar 

  31. Petzow G, Carle V (2006) Metalographic, ceramographic, plastographic etching. Borntraeger, Berlin (in German)

  32. Sadkowski A, Dolata M, Diard JP (2004) Kramers–Kronig transforms as validation of electrochemical immittance data near discontinuity. J Electrochem Soc 151(1):E20. doi:10.1149/1.1633270

    Article  CAS  Google Scholar 

  33. Iwasita T, Nart FC (1997) In situ infrared spectroscopy at electrochemical interfaces. Prog Surf Sci 55(4):271–340. doi:10.1016/S0079-6816(97)00032-4

    Article  CAS  Google Scholar 

  34. Chang KC, Yildiz B, Myers JD, Carter JD, You H (2008) In situ synchrotron X-ray spectroscopy of lanthanum manganite solid oxide fuel cell electrodes. In: 214th ECS meeting, Honolulu, Hawai

  35. DeCaluwe SC, Grass ME, Zhang C, Gabaly FE, Bluhm H, Liu Z, Jackson GS, McDaniel AH, McCarty KF et al (2010) In situ characterization of ceria oxidation states in high-temperature electrochemical cells with ambient pressure XPS. J Phys Chem C 114(46):19853–19861. doi:10.1021/jp107694z

    Article  CAS  Google Scholar 

  36. Seifert F, Paris E, Dingwell DB, Davoli I, Mottana A (1993) A high-temperature device for in situ measurement of X-ray adsorption spectra. Condens Matter Mater Commun 1(2):115–121

    Google Scholar 

  37. Rebrin OI, Scherbakov RY, Polovov IB, Mihalev SM, Volkovich VA, Muhamadeev AS, Vasin BD (2002) Investigation of the kinetics of electrode processes in halide melts containing beryllium, vanadium, niobium and hafnium. Electrochem Soc Proc 19:460–472

    Google Scholar 

  38. Seifert HJ, Ehrlich P (1960) About the systems NaCl/VCl2, KCl/VCl2 und CsCl/VCl2 (in German). J Inorg Gen Chem 302(5–6):284–288. doi:10.1002/zaac.19603020506

    Google Scholar 

  39. Shchukarev SA, Perfilova IL (1963) Reaction of vanadium trichloride with sodium, potassium and rubidium chlorides. Russ J Inorg Chem 8(9):1100–1102

    Google Scholar 

  40. Macdonald JR, Kenan WR (1987) Impedance spectroscopy: emphasizing solid materials and systems. Wiley, New York

    Google Scholar 

  41. Lvovich VF (2012) Impedance spectroscopy: applications to electrochemical and dielectric phenomena. Wiley, Hoboken

    Book  Google Scholar 

Download references

Acknowledgements

The German Research Foundation is gratefully acknowledged for their financial support for this project (HA 4397/6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenija Milicevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milicevic, K., Friedrich, B., Gussone, J. et al. Anodic dissolution of vanadium in molten LiCl–KCl–TiCl2 . J Appl Electrochem 47, 573–581 (2017). https://doi.org/10.1007/s10800-017-1061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1061-6

Keywords

Navigation