Skip to main content
Log in

Polymerizable ionic liquid-derived carbon for oxygen reduction and evolution

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A polymerizable ionic liquid is explored as the precursor to produce nitrogen-doped carbon powders. The ionic liquid is functionalized with NO3 anions, which decompose and release gases during the pyrolysis process, facilitating the formation of a carbon foam. Scanning electron microscopy and transmission electron microscopy analyses show that the carbon foam is composed of curved carbon nanosheets with the maximum thickness of 70 nm. The favorable compositional (nitrogen doping to provide catalytically active sites) and morphological (curved nanosheet architecture to increase the contact area between electrolytes and catalytically active sites) characteristics make the present carbon powders a potential metal-free electrocatalyst for oxygen reduction and oxygen evolution reactions. As expected, the nitrogen-doped and curved carbon nanosheets exhibit a considerable activity towards the oxygen reduction reaction as well as a moderate ability for catalyzing the oxygen evolution reaction in KOH solutions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang J, Zhao Z, Xia Z, Dai L (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452. doi:10.1038/nnano.2015.48

    Article  CAS  Google Scholar 

  2. Song S, Zhang H, Ma X, Shao Z-G, Zhang Y, Yi B (2006) Bifunctional oxygen electrode with corrosion-resistive gas diffusion layer for unitized regenerative fuel cell. Electrochem Commun 8:399–405. doi:10.1016/j.elecom.2006.01.001

    Article  CAS  Google Scholar 

  3. Y. Li, M. Gong, Y. Liang, J. Feng, J.E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai (2013) Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun 4: 1805–1805. doi:10.1038/ncomms2812

    Article  Google Scholar 

  4. Kraytsberg A, Ein-Eli Y (2013) The impact of nano-scaled materials on advanced metal–air battery systems. Nano Energy 2:468–480. doi:10.1016/j.nanoen.2012.11.016

    CAS  Google Scholar 

  5. L. Morales S., A.M. Fernández (2013) Unsupported PtxRuyIrz and PtxIry as bi-functional catalyst for oxygen reduction and oxygen evolution reactions in acid media, for unitized regenerative fuel cell. Int J Electrochem Sci 8:12692–12706

  6. Fan W, Cui Z, Guo X (2013) Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li–O2 cells. J Phys Chem C 117:2623–2627. doi:10.1021/jp310765s

    Article  CAS  Google Scholar 

  7. Prabu M, Ramakrishnan P, Shanmugam S (2014) CoMn2O4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc–air battery. Electrochem Commun 41:59–63. doi:10.1016/j.elecom.2014.01.027

    Article  CAS  Google Scholar 

  8. Sun C, Li F, Ma C, Wang Y, Ren Y, Yang W, Ma Z, Li J, Chen Y, Kim Y (2014) Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries. J Mater Chem A 2:7188–7196. doi:10.1039/c4ta00802b

    Article  CAS  Google Scholar 

  9. Li G, Wang XL, Fu J, Li JD, Park MG, Zhang YN, Lui G, Chen ZW (2016) Pomegranate-inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal-air batteries. Angew Chem Int Ed 55:4977–4982. doi:10.1002/anie.201600750

    Article  CAS  Google Scholar 

  10. L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115. doi:10.1021/cr5003563

  11. J.T. Zhang, L.M. Dai (2015) Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catal 5: 7244–7253. doi:10.1021/acscatal.5b01563

    Article  CAS  Google Scholar 

  12. Lee DU, Xu P, Cano ZP, Kashkooli AG, Park MG, Chen Z (2016) Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries. J Mater Chem A 4:7107–7134. doi:10.1039/C6TA00173D

    Article  CAS  Google Scholar 

  13. J.P. Paraknowitsch, A. Thomas (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6: 2839–2855. doi:10.1039/c3ee41444b

    Article  CAS  Google Scholar 

  14. Liang W, Yin F, Yao C (2014) N-doped graphene as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions in an alkaline electrolyte. Int J Hydrogen Energy 39:15913–15919. doi:10.1016/j.ijhydene.2014.04.071

    Article  Google Scholar 

  15. Silva R, Voiry D, Chhowalla M, Asefa T (2013) Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons. J Am Chem Soc 135:7823–7826. doi:10.1021/ja402450a

    Article  CAS  Google Scholar 

  16. D. Wu, F. Zhang, H. Liang, X. Feng (2012) ChemInform abstract: nanocomposites and macroscopic materials: assembly of chemically modified graphene sheets. ChemInform. doi:10.1002/chin.201248233

    Google Scholar 

  17. Yang W, Fellinger T-P, Antonietti M (2011) Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J Am Chem Soc 133:206–209. doi:10.1021/ja108039j

    Article  CAS  Google Scholar 

  18. She Y, Lu Z, Ni M, Li L, Leung MK (2015) Facile synthesis of nitrogen and sulfur Co-doped carbon from ionic liquid as metal-free catalyst for oxygen reduction reaction. ACS Appl Mater Interfaces 7:7214–7221. doi:10.1016/j.micromeso.2015.12.026

    Article  CAS  Google Scholar 

  19. Paraknowitsch JP, Thomas A (2012) Functional carbon materials from ionic liquid precursors. Macromol Chem Phys 213:1132–1145. doi:10.1002/macp.201100573

    Article  CAS  Google Scholar 

  20. C.C.L. McCrory, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987. doi:10.1021/ja407115p

    Article  CAS  Google Scholar 

  21. Tang S, Wang X, Lei J, Hu Z, Deng S, Ju H (2010) Pt-dispersed flower-like carbon nanosheet aggregation for low-overpotential electrochemical biosensing. Biosens Bioelectron 26:432–436. doi:10.1016/j.bios.2010.07.105

    Article  CAS  Google Scholar 

  22. L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5: 7936–7942. doi:10.1039/C2EE21802J

    Article  CAS  Google Scholar 

  23. Wang S, Yu D, Dai L, Chang DW, Baek J-B (2011) Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5:6202–6209. doi:10.1021/nn200879h

    Article  CAS  Google Scholar 

  24. Kurak KA, Anderson AB (2009) Nitrogen-treated graphite and oxygen electroreduction on pyridinic edge sites. J Phys Chem C 113:6730–6734. doi:10.1021/jp811518e

    Article  CAS  Google Scholar 

  25. Liu Y, Li K, Liu Y, Pu L, Chen Z, Deng S (2015) The high-performance and mechanism of P-doped activated carbon as a catalyst for air-cathode microbial fuel cells. J Mater Chem A 3:21149–21158. doi:10.1039/c5ta04595a

    Article  CAS  Google Scholar 

  26. Wu ZS, Yang SB, Sun Y, Parvez K, Feng XL, Mullen K (2012) 3D nitrogen-doped graphene aerogel-supported fe3o4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085. doi:10.1021/ja3030565

    Article  CAS  Google Scholar 

  27. Gao J, Ma N, Zhai J, Li T, Qin W, Zhang T, Yin Z (2015) Polymerizable ionic liquid as nitrogen-doping precursor for Co-N-C catalyst with enhanced oxygen reduction activity. Ind Eng Chem Res 54:7984–7989. doi:10.1021/acs.iecr.5b01703

    Article  CAS  Google Scholar 

  28. Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang W, Zhu Z, Smith SC, Jaroniec M, Lu GQ, Qiao SZ (2011) Nanoporous graphitic-C3N4@Carbon metal-free electrocatalysts for highly efficient oxygen reduction. J Am Chem Soc 133:20116–20119. doi:10.1021/ja209206c

    Article  CAS  Google Scholar 

  29. Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326. doi:10.1021/nn901850u

    Article  CAS  Google Scholar 

  30. Ho J, Coote ML, Cramer CJ, Truhlar DG (2012) Theoretical calculation of reduction potentials. CRC Press, Boca Raton

    Google Scholar 

  31. Wang X, Hao H, Liu J, T. Huang A Yu (2011) A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim Acta 56:4065–4069. doi:10.1016/j.electacta.2010.12.108

    Article  CAS  Google Scholar 

  32. Wang S, Yu D, Dai L (2011) Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J Am Chem Soc 133:5182–5185. doi:10.1021/ja1112904

    Article  CAS  Google Scholar 

  33. Wang Y, Jiang X (2013) Facile Preparation of Porous carbon nanosheets without template and their excellent electrocatalytic property. ACS Appl Mater Interfaces 5:11597–11602. doi:10.1021/am402669y

    Article  CAS  Google Scholar 

  34. Zhou M, Wang HL, Guo SJ (2016) Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem Soc Rev 45:1273–1307. doi:10.1039/c5cs00414d

    Article  CAS  Google Scholar 

  35. Z. Yong, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto (2013) Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun 4: 105–113. doi:10.1038/ncomms3390

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation project of University Students (No.201610058095), the National Natural Science Foundation of China (No. 21303119, 21576211, 21504063 and 21501131), Tianjin Research Program of Application Foundation and Advanced Technology (No. 15JCQNJC05300 and 13JCYBJC41600Fundamental Research Funds for the Central Universities (No.021314380019) and the National Natural Science Foundation of China (No. 51501088).This work was also benefited from the help of Prof. Shuxin Ouyang from Tianjin University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Yin, Hongbin Lu or Jianyong Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 721 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Shen, C., Tian, J. et al. Polymerizable ionic liquid-derived carbon for oxygen reduction and evolution. J Appl Electrochem 47, 351–359 (2017). https://doi.org/10.1007/s10800-016-1039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1039-9

Keywords

Navigation