Skip to main content
Log in

Application of Fe3O4 nanoparticles functionalized carbon nanotubes for electrochemical sensing of DNA hybridization

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, a novel sensing platform based on Fe3O4 nanoparticles functionalized carbon nanotubes (CNTs) was developed for highly sensitive label-free detection of BCR/ABL fusion gene from chronic myelogenous leukemia. The morphology and electrochemical performance of the Fe3O4/CNTs nanocomposite membrane were systematically investigated. Combining the biocompatibility of Fe3O4 nanoparticles with the excellent electron transfer ability and large surface area of CNTs could improve the density of DNA probe attachment and the sensitivity of DNA detection. Remarkable change has been observed in the impedance spectra before and after hybridization of the probe ssDNA with the target DNA. Under optimal conditions, the dynamic range for detecting the sequence-specific DNA of the BCR/ABL fusion gene was from 1.0 × 10−15 to 1.0 × 10−9 mol L−1, and the detection limit was 2.1 × 10−16 mol L−1. In addition, the DNA electrochemical biosensor was highly selective to discriminate single-base and double-base mismatched sequences.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    Article  CAS  Google Scholar 

  2. Liu AL, Wang K, Weng SH, Lei Y, Lin LQ, Chen W, Lin XH, Chen YZ (2012) Development of electrochemical DNA biosensors. Trends Anal Chem 37:101–111

    Article  Google Scholar 

  3. Sun YG, He XX, Ji J, Jia M, Wang ZP, Sun XL (2015) A highly selective and sensitive electrochemical CS-MWCNTs/Au-NPs composite DNA biosensor for Staphylococcus aureus gene sequence detection. Talanta 141:300–306

    Article  CAS  Google Scholar 

  4. Salamifar SE, Lai RY (2014) Fabrication of electrochemical DNA sensors on gold-modified recessed platinum nanoelectrodes. Anal Chem 86:2849–2852

    Article  CAS  Google Scholar 

  5. Tak M, Gupta V, Tomar M (2014) Flower-like ZnO nanostructure based electrochemical DNA biosensor for bacterial meningitis detection. Biosens Bioelectron 59:200–207

    Article  CAS  Google Scholar 

  6. Patel MK, Ali MA, Zafaryab M, Agrawal VV, Rizvi MMA, Ansari ZA, Ansari SG, Malhotra BD (2013) An iridium oxide nanoparticle and polythionine thin film based platform for sensitive Leishmania DNA detection. Biosens Bioelectron 45:181–188

    Article  CAS  Google Scholar 

  7. Li B, Pan GH, Avent ND, Lowry RB, Madgett TE, Waines PL (2015) Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection. Biosens Bioelectron 72:313–319

    Article  CAS  Google Scholar 

  8. Benvidi A, Rajabzadeh N, Mazloum-Ardakani M, Heidari MM, Mulchandani A (2014) Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide. Biosens Bioelectron 58:145–152

    Article  CAS  Google Scholar 

  9. Jeyapragasam T, Saraswathi R (2014) Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide-chitosan nanocomposite. Sens Actuators B 191:681–687

    Article  CAS  Google Scholar 

  10. Emami M, Shamsipur M, Saber R, Irajirad R (2014) An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2-iron oxide nanoparticle bioconjugates. Analyst 139:2858–2866

    Article  CAS  Google Scholar 

  11. Yu CL, Lo NC, Cheng H, Tsuda T, Sakamoto T, Chen YH, Kuwabata S, Chen PY (2014) An ionic liquid-Fe3O4 nanoparticles-graphite composite electrode used for nonenzymatic electrochemical determination of hydrogen peroxide. J Electroanal Chem 729:109–115

    Article  CAS  Google Scholar 

  12. Song YH, He ZF, Hou HQ, Wang XL, Wang L (2012) Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochim Acta 71:58–65

    Article  CAS  Google Scholar 

  13. Baghayeri M, Zare EN, Lakouraj MM (2014) A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens Bioelectron 55:259–265

    Article  CAS  Google Scholar 

  14. Baghayeri M, Veisi H (2015) Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens Bioelectron 74:190–198

    Article  CAS  Google Scholar 

  15. Baghayeri M, Zare EN, Lakouraj MM (2014) Novel superparamagnetic PFu@Fe3O4 conductive nanocomposite as a suitable host for hemoglobin immobilization. Sens Actuators B 202:1200–1208

    Article  CAS  Google Scholar 

  16. Baghayeri M (2015) Glucose sensing by a glassy carbon electrode modified with glucose oxidase and a magnetic polymeric nanocomposite. RSC Adv 5:18267–18274

    Article  CAS  Google Scholar 

  17. Lijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  18. Yang N, Chen XP, Ren TL, Zhang P, Yang DG (2015) Carbon nanotube based biosensors. Sens Actuators B 207:690–715

    Article  CAS  Google Scholar 

  19. Pilehvar S, Rather JA, Dardenne F, Robbens J, Blust R, De Wael K (2014) Carbon nanotubes based electrochemical aptasensing platform for the detection of hydroxylated polychlorinated biphenyl in human blood serum. Biosens Bioelectron 54:78–84

    Article  CAS  Google Scholar 

  20. Kutluay A, Aslanoglu M (2014) An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine. Anal Chim Acta 839:59–66

    Article  CAS  Google Scholar 

  21. Canbay E, Akyilmaz E (2014) Design of a multiwalled carbon nanotube-Nafion-cysteamine modified tyrosinase biosensor and its adaptation of dopamine determination. Anal Biochem 444:8–15

    Article  CAS  Google Scholar 

  22. Li FY, Peng J, Wang JJ, Tang H, Tan L, Xie QJ, Yao SZ (2014) Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24. Biosens Bioelectron 54:158–164

    Article  CAS  Google Scholar 

  23. Baghayeri M, Zare EN, Namadchian M (2013) Direct electrochemistry and electrocatalysis of hemoglobin immobilized on biocompatible poly(styrene-alternative-maleic acid)/functionalized multi-wall carbon nanotubes blends. Sens Actuators B 188:227–234

    Article  CAS  Google Scholar 

  24. Baghayeri M, Zare EN, Hasanzadeh R (2014) Facile synthesis of PSMA-g-3ABA/MWCNTs nanocomposite as a substrate for hemoglobin immobilization: application to catalysis of H2O2. Mater Sci Eng C 39:213–220

    Article  CAS  Google Scholar 

  25. Baghayeri M, Amiri A, Farhadi S (2016) Development of non-enzymatic glucose sensor based on efficient loading Ag nanoparticles on functionalized carbon nanotubes. Sens Actuators B 225:354–362

    Article  CAS  Google Scholar 

  26. Baghayeri M, Veisi H, Veisi H, Maleki B, Karimi-Maleh H, Beitollahi H (2014) Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Adv 4:49595–49604

    Article  CAS  Google Scholar 

  27. Hershkovitz-Rokah O, Modai S, Pasmanik-Chor M, Toren A, Shomron N, Raanani P, Shpilberg O, Granot G (2015) MiR-30e induces apoptosis and sensitizes K562 cells to imatinib treatment via regulation of the BCR-ABL protein. Cancer Lett 356:597–605

    Article  CAS  Google Scholar 

  28. Jiang C, Yang T, Jiao K, Gao HW (2008) A DNA electrochemical sensor with poly-l-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochim Acta 53:2917–2924

    Article  CAS  Google Scholar 

  29. Zhan YQ, Zhao R, Lei YJ, Meng FB, Zhong JC, Liu XB (2011) Preparation, characterization and electromagnetic properties of carbon nanotubes/Fe3O4 inorganic hybrid material. Appl Surf Sci 257:4524–4528

    Article  CAS  Google Scholar 

  30. Bonanni A, del Valle M (2010) Use of nanomaterials for impedimetric DNA sensors: a review. Anal Chim Acta 678:7–17

    Article  CAS  Google Scholar 

  31. Li SF, Wang L, Li YJ, Zhu XY, Zhong L, Lu LS, Zhang W, Liu B, Xie GM, Feng WL (2013) Electrochemical determination of BCR/ABL fusion gene based on in situ synthesized gold nanoparticles and cerium dioxide nanoparticle. Colloid Surf B 112:344–349

    Article  CAS  Google Scholar 

  32. Zhong GX, Ye JX, Bai FQ, Fu FH, Chen W, Liu AL, Lin XH, Chen YZ (2014) Electrochemical biosensor for detection of BCR/ABL fusion gene based on isorhamnetin as hybridization indicator. Sens Actuators B 204:326–332

    Article  CAS  Google Scholar 

  33. Wang L, Hua EH, Liang M, Ma CX, Liu ZL, Sheng SC, Liu M, Xie GM, Feng WL (2014) Graphene sheets, polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Biosens Bioelectron 51:201–207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21205057, 21375057), and the Doctoral Fund and Scientific Research Project of Linyi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W. Application of Fe3O4 nanoparticles functionalized carbon nanotubes for electrochemical sensing of DNA hybridization. J Appl Electrochem 46, 559–566 (2016). https://doi.org/10.1007/s10800-016-0952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0952-2

Keywords

Navigation