Skip to main content
Log in

Electrochemical properties of hollow copper (II) oxide nanopowders prepared by salt-assisted spray drying process applying nanoscale Kirkendall diffusion

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The synthesis of hollow CuO nanopowders by a salt-assisted spray drying process applying nanoscale Kirkendall diffusion is introduced. The electrochemical properties of the hollow CuO nanopowders for lithium-ion storage are also investigated. The first step of post-treatment of the spray-dried powders under a reducing atmosphere forms spherical and hollow NaCl powders embedded with Cu nanocrystals. Further post-treatment of the Cu–NaCl composite powders under an air atmosphere forms the spherical and hollow NaCl powders embedded with the hollow CuO nanopowders. Oxidation of the Cu nanocrystals under an air atmosphere produces hollow CuO nanopowders by nanoscale Kirkendall diffusion. The spherical and hollow CuO–NaCl composite powder transforms into ultrafine hollow CuO nanopowders by complete washing with distilled water to remove NaCl. The initial discharge and charge capacities of the hollow CuO nanopowders for lithium-ion storage at a current density of 1 A g−1 are 1077 and 781 mA h g−1, respectively. The reversible discharge capacity of the hollow CuO nanopowders for the 700th cycle is 803 mA h g−1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 47:496–499

    Google Scholar 

  2. Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Adv Mater 22:E170–E192

    Article  CAS  Google Scholar 

  3. Reddy MV, Rao GVS, Chowdari BVR (2013) Chem Rev 113:5364–5457

    Article  CAS  Google Scholar 

  4. Goriparti S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) J Power Sources 257:421–443

    Article  CAS  Google Scholar 

  5. Zhang L, Wu HB, Lou XW (2014) Adv Energy Mater 4:1300958

    Google Scholar 

  6. Chen JS, Lou XW (2013) Small 9:1877–1893

    Article  CAS  Google Scholar 

  7. Zhang Q, Chen H, Wang J, Xu D, Li X, Yang Y, Zhang K (2014) ChemSusChem 7:2325–2334

    Article  CAS  Google Scholar 

  8. Bai J, Li XG, Liu GZ, Qian Y, Xiong SL (2014) Adv Funct Mater 24:3012–3020

    Article  CAS  Google Scholar 

  9. Jiang YZ, Zhang D, Li Y, Yuan TZ, Bahlawane NF, Liang C, Sun WP, Lu YH, Yan M (2014) Nano Energy 4:23–30

    Article  CAS  Google Scholar 

  10. Zhang GQ, Lou XW (2014) Angew Chem Int Ed 126:9187–9190

    Article  Google Scholar 

  11. Han F, Li WC, Lei C, He B, Oshida KC, Lu AH (2014) Small 10:2637–2644

    Article  CAS  Google Scholar 

  12. Xu SM, Hessel CM, Ren H, Yu R, Jin Q, Yang M, Zhao HJ, Wang D (2014) Energy Environ Sci 7:632–637

    Article  CAS  Google Scholar 

  13. Wang JY, Yang NL, Tang HJ, Dong ZH, Jin Q, Yang M, Kisailus D, Zhao HJ, Tang ZY, Wang D (2013) Angew Chem Int Ed 52:6417–6420

    Article  CAS  Google Scholar 

  14. Zhu ZQ, Cheng FY, Chen J (2013) J Mater Chem A 1:9484–9490

    Article  CAS  Google Scholar 

  15. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  16. Lou XW, Li CM, Archer LA (2009) Adv Mater 21:2536–2539

    Article  CAS  Google Scholar 

  17. Chan CK, Zhang XF, Cui Y (2008) Nano Lett 8:307–309

    Article  CAS  Google Scholar 

  18. Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Chem Mater 22:5306–5313

    Article  CAS  Google Scholar 

  19. Yuan SM, Li JX, Yang LT, Su LW, Liu L, Zhou Z (2011) ACS Appl Mater Interfaces 3:705–709

    Article  CAS  Google Scholar 

  20. Wang L, Tang W, Jing Y, Su L, Zhou Z (2014) ACS Appl Mater Interfaces 6:12346–12352

    Article  CAS  Google Scholar 

  21. Chen J, Xu LN, Li WY, Gou XL (2005) Adv Mater 17:582–586

    Article  CAS  Google Scholar 

  22. Chen J, Xia XH, Tu JP, Xiong QQ, Yu YX, Wang XL, Gu CD (2012) J Mater Chem 22:15056–15061

    Article  CAS  Google Scholar 

  23. Morales J, Sánchez L, Martín F, Ramos-Barrado JR, Sánchez M (2004) Electrochim Acta 49:4589–4597

    Article  CAS  Google Scholar 

  24. Choi SH, Kang YC (2014) ChemSusChem 7:523–528

    Article  CAS  Google Scholar 

  25. Xiang JY, Tu JP, Zhang L, Zhou Y, Wang XL, Shi SJ (2010) Electrochim Acta 55:1820–1824

    Article  CAS  Google Scholar 

  26. Yuan Z, Wang Y, Qian Y (2012) RSC Adv 2:8602–8605

    Article  CAS  Google Scholar 

  27. Wang LL, Cheng W, Gong H, Wang C, Wang D, Tang K, Qian Y (2012) J Mater Chem 22:11297–11302

    Article  CAS  Google Scholar 

  28. Wu R, Qian X, Yu F, Liu H, Zhou K, Wei J, Huang Y (2013) J Mater Chem A 1:11126–11129

    Article  CAS  Google Scholar 

  29. Reddy MV, Yu C, Jiahuan F, Loh KP, Chowdari BVR (2013) ACS Appl Mater Interfaces 5:4361–4366

    Article  CAS  Google Scholar 

  30. Wang C, Li Q, Wang FF, Xia GF, Liu RQ, Li D, Li N, Spendelow JS, Wu G (2014) ACS Appl Mater Interfaces 6:1243–1250

    Article  CAS  Google Scholar 

  31. Wang J, Liu YC, Wang S, Guo XT, Liu YP (2014) J Mater Chem A 2:1224–1229

    Article  CAS  Google Scholar 

  32. Wang B, Wu XL, Shu CY, Guo YG, Wang CR (2010) J Mater Chem 20:10661–10664

    Article  CAS  Google Scholar 

  33. Zhang YM, Zhang WX, Li M, Yang Z, Chen G, Wang Q (2013) J Mater Chem A 1:14368–14374

    Article  CAS  Google Scholar 

  34. Zhang XJ, Yu L, Wang LL, Ji R, Wang GF, Geng B (2013) Phys Chem Chem Phys 15:521–525

    Article  Google Scholar 

  35. Cheng F, Liang J, Tao Z, Chen J (2011) Adv Mater 23:1695–1715

    Article  CAS  Google Scholar 

  36. Ko SW, Lee JI, Yang HS, Park SJ, Jeong UY (2012) Adv Mater 24:4451–4456

    Article  CAS  Google Scholar 

  37. Xu M, Wang F, Ding B, Song X, Fang J (2012) RSC Adv 2:2240–2243

    Article  CAS  Google Scholar 

  38. Zhang Q, Xu D, Zhou X, Wu X, Zhang K (2014) Small 10:935–943

    Article  CAS  Google Scholar 

  39. Sahay R, Kumar PS, Aravindan V, Sundaramurthy J, Ling WC, Mhaisalkar SG, Ramakrishna S, Madhavi S (2012) J Phys Chem C 116:18087–18092

    Article  CAS  Google Scholar 

  40. Wang L, Gong H, Wang C, Wang D, Tang K, Qianab Y (2012) Nanoscale 4:6850–6855

    Article  CAS  Google Scholar 

  41. Yu Q, Huang H, Chen R, Wang P, Yang HS, Gao MX, Peng XS, Yea Z (2012) Nanoscale 4:2613–2620

    Article  CAS  Google Scholar 

  42. Zhang Y, Xu M, Wang F, Song X, Wang Y, Yang S (2013) J Phys Chem C 117:12346–12351

    Article  CAS  Google Scholar 

  43. Wang X, Tang DM, Li H, Yi W, Zhai T, Bando Y, Golberg D (2012) Chem Commun 48:4812–4814

    Article  CAS  Google Scholar 

  44. Guan X, Li L, Li G, Fu Z, Zheng J, Yan T (2011) J Alloy Compd 509:3367–3374

    Article  CAS  Google Scholar 

  45. Dar MA, Nam SH, Kim YS, Kim WB (2010) J Solid State Electrochem 14:1719–1726

    Article  CAS  Google Scholar 

  46. Choi CS, Park YU, Kim H, Kim NR, Kang K, Lee HM (2012) Electrochim Acta 70:98–104

    Article  CAS  Google Scholar 

  47. Cao F, Xia XH, Pan GX, Chen J, Zhang YJ (2015) Electrochim Acta 178:574–579

    Article  CAS  Google Scholar 

  48. Bai Z, Zhang Y, Zhang Y, Guo C, Tang B (2015) Electrochim Acta 159:29–34

    Article  CAS  Google Scholar 

  49. Lou XW, Archer LA, Yang Z (2008) Adv Mater 20:3987–4019

    Article  CAS  Google Scholar 

  50. Wang Z, Zhou L, Lou XW (2012) Adv Mater 24:1903–1911

    Article  CAS  Google Scholar 

  51. Cho JS, Hong YJ, Lee JH (2015) Kang YC Nanoscale 7:8361–8367

    Article  CAS  Google Scholar 

  52. Cho JS (2015) Kang YC Small 11:4681–4973

    Google Scholar 

  53. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711–714

    Article  CAS  Google Scholar 

  54. Chiang RK, Chiang RT (2007) Inorg Chem 46:369–371

    Article  CAS  Google Scholar 

  55. Fan HJ, Gösele U, Zacharias M (2007) Small 3:1660–1671

    Article  CAS  Google Scholar 

  56. Fan HJ, Knez M, Scholz R, Hesse D, Nielsch K, Zacharias M, Gösele U (2007) Nano Lett 7:993–997

    Article  CAS  Google Scholar 

  57. Jana S, Chang JW, Rioux RM (2013) Nano Lett 13:3618–3625

    Article  CAS  Google Scholar 

  58. Xiao G, Zeng Y, Jiang Y, Ning J, Zheng W, Liu B, Chen X, Zou G, Zou B (2013) Small 9:793–799

    Article  CAS  Google Scholar 

  59. Cho JS, Hong YJ, Kang YC (2015) ACS Nano 9:4026–4035

    Article  CAS  Google Scholar 

  60. Su D, Xie X, Dou S, Wang G (2014) Sci Rep 4:5753

    Article  CAS  Google Scholar 

  61. Shi L, Fan C, Sun C, Ren Z, Fu X, Qian G, Wang Z (2015) RSC Adv 5:28611–28618

    Article  CAS  Google Scholar 

  62. Xu YH, Jian GQ, Zachariah MR, Wang CS (2013) J Mater Chem A 1:15486–15490

    Article  CAS  Google Scholar 

  63. Chen KF, Xue DF (2013) J Phys Chem C 117:22576–22583

    Article  CAS  Google Scholar 

  64. Débart A, Dupont ZL, Poizot P, Leriche JB, Tarascon JM (2001) J Electrochem Soc 148:A1266–A1274

    Article  Google Scholar 

  65. Chen X, Zhang N, Sun K (2012) J Mater Chem 22:13637–13642

    Article  CAS  Google Scholar 

  66. Wei W, Yang YB, Zhou HX, Lieberwirth I, Feng XL, Müllen L (2013) Adv Mater 25:2909–2914

    Article  CAS  Google Scholar 

  67. Li N, Liu G, Zhen C, Li F, Zhang L, Cheng HM (2011) Adv Funct Mater 21:1717–1722

    Article  CAS  Google Scholar 

  68. Zhu Y, Xu Y, Liu Y, Luo C, Wang C (2013) Nanoscale 5:780–787

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (NRF-2015R1A2A1A15056049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Chan Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, K.M., Kim, J.H., Choi, Y.J. et al. Electrochemical properties of hollow copper (II) oxide nanopowders prepared by salt-assisted spray drying process applying nanoscale Kirkendall diffusion. J Appl Electrochem 46, 469–477 (2016). https://doi.org/10.1007/s10800-016-0941-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0941-5

Keywords

Navigation