Skip to main content
Log in

Inkjet-printed interdigitated cells for photoelectrochemical oxidation of diluted aqueous pollutants

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Planar, interdigitated photoelectrochemical cells were made by inkjet printing. The electrode fingers had widths ranging from 200 to 1500 µm and were revealed by printing a positive protective polymer mask on fluorine-doped tin oxide-coated glass slides and subsequent etching. One finger family was overprinted by an ink-jettable sol–gel composition based on titanium propoxide which was then converted into TiO2 by annealing in air. An incident photon to current conversion efficiency of 0.19 was obtained at 360 nm for 200-nm-thick films. The influence of electrode geometry and titania thickness on the electrochemical properties of resulting cells is discussed in detail. Due to the interdigitated layout, photoelectrochemical response was not suffering from iR drop down to low electrolyte ionic strengths. The printed cells were used in photoelectrocatalytic degradation experiments of aqueous solutions of benzoic acid by broadband ultraviolet irradiation (UVA) and electric bias of 1 V and delivered considerable acceleration of the degradation process compared to the plain photocatalytic mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. van Grieken R, Marugan J, Sordo C, Pablos C (2009) Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors. Catal Today 144(1–2):48–54. doi:10.1016/j.cattod.2008.11.017

    Article  Google Scholar 

  2. Tasbihi M, Ngah CR, Aziz N, Mansor A, Abdullah AZ, Teong LK, Mohamed AR (2007) Lifetime and regeneration studies of various supported TiO2 photocatalysts for the degradation of phenol under UV-C light in a batch reactor. Ind Eng Chem Res 46(26):9006–9014. doi:10.1021/ie070284x

    Article  CAS  Google Scholar 

  3. Neumann-Spallart M (2007) Aspects of photocatalysis on semiconductors: photoelectrocatalysis. Chimia 61(12):806–809. doi:10.2533/chimia.2007.806

    Article  CAS  Google Scholar 

  4. Waldner G, Bruger A, Gaikwad NS, Neumann-Spallart M (2007) WO3 thin films for photoelectrochemical purification of water. Chemosphere 67(4):779–784. doi:10.1016/j.chemosphere.2006.10.024

    Article  CAS  Google Scholar 

  5. Fernandez-Ibanez P, Malato S, Enea O (1999) Photoelectrochemical reactors for the solar decontamination of water. Catal Today 54(2–3):329–339. doi:10.1016/s0920-5861(99)00194-7

    Article  CAS  Google Scholar 

  6. Butterfield IM, Christensen PA, Hamnett A, Shaw KE, Walker GM, Walker SA, Howarth CR (1997) Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water. J Appl Electrochem 27(4):385–395. doi:10.1023/a:1018453402332

    Article  CAS  Google Scholar 

  7. Dikici T, Erol M, Toparli M, Celik E (2014) Characterization and photocatalytic properties of nanoporous titanium dioxide layer fabricated on pure titanium substrates by the anodic oxidation process. Ceram Int 40(1):1587–1591. doi:10.1016/j.ceramint.2013.07.046

    Article  CAS  Google Scholar 

  8. Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J Solid State Electrochem 19(5):1359–1366. doi:10.1007/s10008-015-2758-2

    Article  CAS  Google Scholar 

  9. Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram Int 41(7):8735–8741. doi:10.1016/j.ceramint.2015.03.094

    Article  CAS  Google Scholar 

  10. Momeni MM, Ghayeb Y (2015) Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting. J Electroanal Chem 751:43–48. doi:10.1016/j.jelechem.2015.05.035

    Article  CAS  Google Scholar 

  11. Momeni M, Ghayeb Y (2015) Synthesis and characterization of iron-doped titania nanohoneycomb and nanoporous semiconductors by electrochemical anodizing method as good visible light active photocatalysts. J Mater Sci 26(7):5509–5517. doi:10.1007/s10854-015-3108-y

    CAS  Google Scholar 

  12. Momeni M, Ghayeb Y, Davarzadeh M (2015) Electrochemical construction of different titania–tungsten trioxide nanotubular composite and their photocatalytic activity for pollutant degradation: a recyclable photocatalysts. J Mater Sci 26(3):1560–1567. doi:10.1007/s10854-014-2575-x

    CAS  Google Scholar 

  13. Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloys Compd 637:393–400. doi:10.1016/j.jallcom.2015.02.137

    Article  CAS  Google Scholar 

  14. Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol-gel type syntheses and its applications. J Mater Sci 46(11):3669–3686. doi:10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  15. Bettini LG, Dozzi MV, Della Foglia F, Chiarello GL, Selli E, Lenardi C, Piseri P, Milani P (2015) Mixed-phase nanocrystalline TiO2 photocatalysts produced by flame spray pyrolysis. Appl Catal B 178:226–232. doi:10.1016/j.apcatb.2014.09.013

    Article  CAS  Google Scholar 

  16. Neumann-Spallart M, Shinde SS, Mahadik M, Bhosale CH (2013) Photoelectrochemical degradation of selected aromatic molecules. Electrochim Acta 111:830–836. doi:10.1016/j.electacta.2013.08.080

    Article  CAS  Google Scholar 

  17. Neumann-Spallart M (2011) Photoelectrochemistry on a planar, interdigitated electrochemical cell. Electrochim Acta 56(24):8752–8757. doi:10.1016/j.electacta.2011.07.089

    Article  CAS  Google Scholar 

  18. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412. doi:10.1016/j.solmat.2008.10.004

    Article  CAS  Google Scholar 

  19. Alonso-Lomillo MA, Dominguez-Renedo O, Arcos-Martinez MJ (2010) Screen-printed biosensors in microbiology; a review. Talanta 82(5):1629–1636. doi:10.1016/j.talanta.2010.08.033

    Article  CAS  Google Scholar 

  20. Li M, Li Y-T, Li D-W, Long Y-T (2012) Recent developments and applications of screen-printed electrodes in environmental assays—a review. Anal Chim Acta 734:31–44. doi:10.1016/j.aca.2012.05.018

    Article  CAS  Google Scholar 

  21. Riegel S, Mutter F, Lauermann T, Terheiden B, Hahn G (2012) Review on screen printed metallization on p-type silicon. Proc Third Metallization Workshop Metallization Cryst Silicon Sol Cells 21:14–23. doi:10.1016/j.egypro.2012.05.003

    CAS  Google Scholar 

  22. Martin GD, Hoath SD, Hutchings IM (2006) Inkjet printing—the physics of manipulating liquid jets and drops. In: Conference on engineering in physics—synergy for success, London, England. doi:10.1088/1742-6596/105/1/012001

  23. Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13(10):3299–3305. doi:10.1021/cm0101632

    Article  CAS  Google Scholar 

  24. Sirringhaus H, Shimoda T (2003) Inkjet printing of functional materials. MRS Bull 28(11):802–806. doi:10.1557/mrs2003.228

    Article  Google Scholar 

  25. Tekin E, Smith PJ, Schubert US (2012) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4(4):703–713. doi:10.1039/B711984D

    Article  Google Scholar 

  26. Dzik P, Veselý M, Králová M, Neumann-Spallart M (2015) Ink-jet printed planar electrochemical cells. Appl Catal B 178:186–191. doi:10.1016/j.apcatb.2014.09.030

    Article  CAS  Google Scholar 

  27. Tang W, Feng LR, Zhao JQ, Cui QY, Chen SJ, Guo XJ (2014) Inkjet printed fine silver electrodes for all-solution-processed low-voltage organic thin film transistors. J Mater Chem C 2(11):1995–2000. doi:10.1039/c3tc32134g

    Article  CAS  Google Scholar 

  28. Wang MW, Pang DC, Tseng YE, Tseng CC (2014) The study of light guide plate fabricated by inkjet printing technique. J Taiwan Inst Chem Eng 45(3):1049–1055. doi:10.1016/j.jtice.2013.08.021

    Article  CAS  Google Scholar 

  29. Tarapata G, Marzecki M (2013) Methodology and technological aspects of the flexible substrate preparation for Ink-jet Printing technology. In: Romaniuk RS (ed) Photonics applications in astronomy, communications, industry, and high-energy physics experiments, vol 8903. Proceedings of SPIE. doi:89032m10.1117/12.2041890

  30. Kwon JT, Eom SH, Moon BS, Shin JK, Kim KS, Lee SH, Lee YS (2012) Studies on printing inks containing poly 2-methoxy-5-(2-ethylhexyl-oxyl)-1,4-phenylenevinylene as an emissive material for the fabrication of polymer light-emitting diodes by inkjet printing. Bull Korean Chem Soc 33(2):464–468. doi:10.5012/bkcs.2012.33.2.464

    Article  CAS  Google Scholar 

  31. Dzik P, Morozová M, Klusoň P, Veselý M (2012) Photocatalytic and self-cleaning properties of titania coatings prepared by inkjet direct patterning of a reverse micelles sol-gel composition. J Adv Oxid Technol 15(1):89–97

    CAS  Google Scholar 

  32. Swartz JD, Deravi LF, Wright DW (2010) Bottom-up synthesis of biologically active multilayer films using inkjet-printed templates. Adv Funct Mater 20(9):1488–1492. doi:10.1002/adfm.200902169

    Article  CAS  Google Scholar 

  33. Sowade E, Hammerschmidt J, Blaudeck T, Baumann RR, Polster D, Baumgartel T, Graaf H, von Borczyskowski C, Wagner R, Cichos F, Sist (2009) Inkjet printing of polymer microspheres. In: Nip 25: digital fabrication 2009, Technical program and proceedings

  34. Deravi LF, Swartz JD, Wright DW (2008) Piezoelectric inkjet printing of biomimetic surfaces for enzyme encapsulation. In: Nip24/digital fabrication 2008: 24th international conference on digital printing technologies, technical program and proceedings

  35. Černá M, Veselý M, Dzik P (2011) Physical and chemical properties of titanium dioxide printed layers. Catal Today 161(1):97–104. doi:10.1016/j.cattod.2010.11.019

    Article  Google Scholar 

  36. Cernigoj U, Kete M, Stangar UL (2010) Development of a fluorescence-based method for evaluation of self-cleaning properties of photocatalytic layers. Catal Today 151(1–2):46–52. doi:10.1016/j.cattod.2010.03.043

    Article  CAS  Google Scholar 

  37. Ishibashi K, Fujishima A, Watanabe T, Hashimoto K (2000) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2(3):207–210. doi:10.1016/s1388-2481(00)00006-0

    Article  CAS  Google Scholar 

  38. Chan AHC, Chan CK, Barford JP, Porter JF (2003) Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater. Water Res 37(5):1125–1135. doi:10.1016/s0043-1354(02)00465-7

    Article  CAS  Google Scholar 

  39. Karim MM, Lee HS, Kim YS, Bae HS, Lee SH (2006) Analysis of salicylic acid based on the fluorescence enhancement of the As(III)-salicylic acid system. Anal Chim Acta 576(1):136–139. doi:10.1016/j.aca.2006.02.004

    Article  CAS  Google Scholar 

  40. Pozdnyakov IP, Pigliucci A, Tkachenko N, Plyusnin VF, Vauthey E, Lemmetyinen H (2009) The photophysics of salicylic acid derivatives in aqueous solution. J Phys Org Chem 22(5):449–454. doi:10.1002/poc.1489

    Article  CAS  Google Scholar 

  41. Morozova M, Kluson P, Dzik P, Vesely M, Baudys M, Krysa J, Solcova O (2013) The influence of various deposition techniques on the photoelectrochemical properties of the titanium dioxide thin film. J Sol Gel Sci Technol 65(3):452–458. doi:10.1007/s10971-012-2957-6

    Article  CAS  Google Scholar 

  42. Kralova M, Dzik P, Vesely M, Cihlar J (2013) Preparation and characterization of doped titanium dioxide printed layers. Catal Today 230:188–196

    Article  Google Scholar 

  43. Schmiedova V, Dzik P, Vesely M, Zmeskal O, Morozova M, Kluson P (2015) Optical properties of titania coatings prepared by inkjet direct patterning of a reverse micelles sol-gel composition. Molecules 20(8):14552

    Article  CAS  Google Scholar 

  44. Olthuis W, Streekstra W, Bergveld P (1995) Theoretical and experimental-determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sens Actuators B 24(1–3):252–256. doi:10.1016/0925-4005(95)85053-8

    Article  CAS  Google Scholar 

  45. Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53(1):115–129. doi:10.1016/s0920-5861(99)00107-8

    Article  CAS  Google Scholar 

  46. Lawless D, Serpone N, Meisel D (1991) Role of OH· radicals and trapped holes in photocatalysis—a pulse-radiolysis study. J Phys Chem 95(13):5166–5170. doi:10.1021/j100166a047

    Article  CAS  Google Scholar 

  47. Tantis I, Bousiakou L, Frontistis Z, Mantzavinos D, Konstantinou I, Antonopoulou M, Karikas G-A, Lianos P (2015) Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: effect of applied electrical bias on degradation and transformation products. J Hazard Mater 294:57–63. doi:10.1016/j.jhazmat.2015.03.042

    Article  CAS  Google Scholar 

  48. Tantis I, Stathatos E, Mantzavinos D, Lianos P (2015) Photoelectrocatalytic degradation of potential water pollutants in the presence of NaCl using nanocrystalline titania films. J Chem Technol Biotechnol 90(7):1338–1344. doi:10.1002/jctb.4549

    Article  CAS  Google Scholar 

  49. Tantis I, Bousiakou L, Karikas G-A, Lianos P (2015) Photocatalytic and photoelectrocatalytic degradation of the antibacterial agent ciprofloxacin. Photochem Photobiol Sci 14(3):603–607. doi:10.1039/c4pp00377b

    Article  CAS  Google Scholar 

  50. Olya ME, Pirkarami A (2013) Cost-effective photoelectrocatalytic treatment of dyes in a batch reactor equipped with solar cells. Sep Purif Technol 118:557–566. doi:10.1016/j.seppur.2013.07.038

    Article  CAS  Google Scholar 

  51. Mumjitha M, Raj V (2015) Electrochemical synthesis, structural features and photoelectrocatalytic activity of TiO2-SiO2 ceramic coatings on dye degradation. Mater Sci Eng B 198:62–73. doi:10.1016/j.mseb.2015.03.020

    Article  CAS  Google Scholar 

  52. Li G, Liu X, An J, Yang H, Zhang S, Wong P-K, An T, Zhao H (2015) Photocatalytic and photoelectrocatalytic degradation and mineralization of small biological compounds amino acids at TiO2 photoanodes. Catal Today 245:46–53. doi:10.1016/j.cattod.2014.05.040

    Article  CAS  Google Scholar 

  53. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. National Association of Corrosion Engineers, Houston

    Google Scholar 

  54. Shinde PS, Patil PS, Bhosale PN, Bruger A, Nauer G, Neumann-Spallart M, Bhosale CH (2009) UVA and solar light assisted photoelectrocatalytic degradation of AO7 dye in water using spray deposited TiO2 thin films. Appl Catal B 89(1–2):288–294. doi:10.1016/j.apcatb.2009.02.025

    Article  CAS  Google Scholar 

  55. Burgues-Ceballos I, Stella M, Lacharmoise P, Martinez-Ferrero E (2014) Towards industrialization of polymer solar cells: material processing for upscaling. J Mater Chem A 2(42):17711–17722. doi:10.1039/c4ta03780d

    Article  CAS  Google Scholar 

  56. Toivola M, Peltola T, Miettunen K, Halme J, Lund P (2010) Thin film nano solar cells-from device optimization to upscaling. J Nanosci Nanotechnol 10(2):1078–1084. doi:10.1166/jnn.2010.1872

    Article  CAS  Google Scholar 

  57. M-s Hwang, B-y Jeong, Moon J, Chun S-K, Kim J (2011) Inkjet-printing of indium tin oxide (ITO) films for transparent conducting electrodes. Mater Sci Eng B 176(14):1128–1131. doi:10.1016/j.mseb.2011.05.053

    Article  Google Scholar 

  58. Song JW, Yoon YH, Kim J, Han CS, Choi BS, Kim JH, Sid (2007) Direct fabrication and patterning of transparent conductive carbon nanotube film using inkjet printing. In: SID International Symposium, Digest of Technical Papers, SID; Soc. Information Display: Long Beach, 2007; pp 1613–1616. doi: 10.1889/1.2785629

  59. Jeong J-A, Kim H-K (2010) Characteristics of inkjet-printed nano indium tin oxide particles for transparent conducting electrodes. Curr Appl Phys 10(4):E105–E108. doi:10.1016/j.cap.2010.06.009

    Article  Google Scholar 

  60. Černá M, Veselý M, Dzik P, Guillard C, Puzenat E, Lepičová M (2013) Fabrication, characterization and photocatalytic activity of TiO2 layers prepared by inkjet printing of stabilized nanocrystalline suspensions. Appl Catal B 138–139:84–94. doi:10.1016/j.apcatb.2013.02.035

    Google Scholar 

  61. Uchida H, Otsubo A, Itatani K, Koda S (2005) Low-temperature deposition of polycrystalline titanium oxide thin film on Si substrate using supercritical carbon dioxide fluid. Jpn J Appl Phys Part 1 44(4A):1901–1906. doi:10.1143/jjap.44.1901

    Article  CAS  Google Scholar 

  62. Bazargan MH, Byranvand MM, Kharat AN (2012) Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells. Int J Mater Res 103(3):347–351. doi:10.3139/146.110644

    Article  CAS  Google Scholar 

  63. Dzik P, Veselý M, Kete M, Pavlica E, Štangar UL, Neumann-Spallart M (2015) Properties and application perspective of hybrid titania-silica patterns fabricated by inkjet printing. ACS Appl Mater Interfaces 7(30):16177–16190. doi:10.1021/acsami.5b03494

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministry of Education, Youth and Sports of the Czech Republic for support through projects CZ.1.07/2.3.00/30.0005 and LD14131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Dzik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzik, P., Veselý, M., Blašková, M. et al. Inkjet-printed interdigitated cells for photoelectrochemical oxidation of diluted aqueous pollutants. J Appl Electrochem 45, 1265–1276 (2015). https://doi.org/10.1007/s10800-015-0893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0893-1

Keywords

Navigation