Skip to main content
Log in

Comparative study of HNO3 activation effect on porous carbons having different porous characteristics

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Two carbide-derived carbons (CDCs) were synthesized by chlorination from TiC at 600 and 1000 °C. These CDCs were treated by HNO3 solution and evaluated as supercapacitor electrode materials in an alkaline electrolyte. It is found that the structure in CDC synthesized at 600 °C is disordered carbon with micropores, whereas for the CDC synthesized at 1000 °C, the structure in it is mainly well-ordered graphitic structure with micro- and meso-pores. Due to the big difference of these two CDCs, HNO3 activation plays the different effects in structure and consequently the specific capacitance. CDC synthesized at 600 °C is easier to be activated with the same HNO3 concentration and the increase of specific capacitance with HNO3 concentration mainly caused by pseudocapacitance. For CDC synthesized at 1000 °C, HNO3 activation improves the wettability of it and the increased accessible surface area causes considerable increase in specific capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yun YS, Cho SY, Shim J, Kim BH, Chang SJ, Baek SJ, Huh YS, Tak Y, Park YW, Park S, Jin HJ (2013) Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater 25:1993–1998

    Article  CAS  Google Scholar 

  2. Miller JR, Outlaw RA, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 329:1637–1639

    Article  CAS  Google Scholar 

  3. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2012) Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv Funct Mater 22:827–834

    Article  CAS  Google Scholar 

  4. Gao P-C, Tsai W-Y, Daffos B, Taberna P-L, Pérez CR, Gogotsi Y, Simon P, Favier F (2015) Graphene-like carbide derived carbon for high-power supercapacitors. Nano Energy 12:197–206

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  6. Lin R, Huang P, Ségalini J, Largeot C, Taberna PL, Chmiola J, Gogotsi Y, Simon P (2009) Solvent effect on the ion adsorption from ionic liquid electrolyte into sub-nanometer carbon pores. Electrochim Acta 54:7025–7032

    Article  CAS  Google Scholar 

  7. Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q, Kang F, Zhi L (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater 24:6348–6355

    Article  CAS  Google Scholar 

  8. Goh BM, Wang Y, Reddy MV, Ding YL, Lu L, Bunker C, Loh KP (2014) Filling the voids of graphene foam with graphene “eggshell” for improved lithium-ion storage. ACS Appl Mater Interfaces 6:9835–9841

    Article  CAS  Google Scholar 

  9. Petnikota S, Rotte NK, Srikanth VVSS, Kota BSR, Reddy MV, Loh KP, Chowdari BVR (2013) Electrochemical studies of few-layered graphene as an anode material for Li ion batteries. J. Solid State Electrochem 18:941–949

    Article  Google Scholar 

  10. Wu Y, Zhu P, Reddy MV, Chowdari BV, Ramakrishna S (2014) Maghemite nanoparticles on electrospun CNFs template as prospective lithium-ion battery anode. ACS Appl Mater. Interfaces 6:1951–1958

    Article  CAS  Google Scholar 

  11. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  12. Presser V, Heon M, Gogotsi Y (2011) Carbide-derived carbons—from porous networks to nanotubes and graphene. Adv Funct Mater 21:810–833

    Article  CAS  Google Scholar 

  13. Aravindan V, Reddy MV, Madhavi S, Mhaisalkar SG, Subba GV, Rao GS, Chowdari BVR (2011) Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode. J Power Sources 196:8850–8854

    Article  CAS  Google Scholar 

  14. Krishnan SG, Reddy MV, Harilal M, Vidyadharan B, Misnon II, Rahim MHA, Ismail J, Jose R (2015) Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim Acta 161:312–321

    Article  CAS  Google Scholar 

  15. Reddy MV, Jose R, Le Viet A, Ozoemena KI, Chowdari BVR, Ramakrishna S (2014) Studies on the lithium ion diffusion coefficients of electrospun Nb2O5 nanostructures using galvanostatic intermittent titration and electrochemical impedance spectroscopy. Electrochim Acta 128:198–202

    Article  CAS  Google Scholar 

  16. Reddy MV, Subba GV, Rao GS, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  CAS  Google Scholar 

  17. Wu Y, Balakrishna R, Reddy MV, Nair AS, Chowdari BVR, Ramakrishna S (2012) Functional properties of electrospun NiO/RuO2 composite carbon nanofibers. J Alloy Compd 517:69–74

    Article  CAS  Google Scholar 

  18. Das B, Behm M, Lindbergh G, Reddy MV, Chowdari BVR (2015) High performance metal nitrides, MN (M=Cr, Co) nanoparticles for non-aqueous hybrid supercapacitors, Adv. Powder Technol, In Press

  19. Feng Z, Yang Z, Huang J, Xie X, Zhang Z (2015) The superior cycling performance of the hydrothermal synthesized carbon-coated ZnO as anode material for zinc–nickel secondary cells. J Power Sources 276:162–169

    Article  CAS  Google Scholar 

  20. Jung D, Han M, Lee GS (2014) Gas-sensing properties of multi-walled carbon-nanotube sheet coated with NiO. Carbon 78:156–163

    Article  CAS  Google Scholar 

  21. Aravindan V, Chuiling W, Reddy MV, Rao GV, Chowdari BV, Madhavi S (2012) Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors. Phys Chem Chem Phys PCCP 14:5808–5814

    Article  CAS  Google Scholar 

  22. Aravindan V, Reddy MV, Madhavi S, Rao GVS, Chowdari BVR (2012) Electrochemical performance of α-MnO2 Nanorods/activated carbon hybrid supercapacitor. Nanosci Nanotech Let 4:724–728

    Article  CAS  Google Scholar 

  23. Soltani SM, Yazdi SK, Hosseini S, Gargari MK (2014) Effect of nitric acid modification on porous characteristics of mesoporous char synthesized from the pyrolysis of used cigarette filters. J Environ Chem Eng 2:1301–1308

    Article  CAS  Google Scholar 

  24. Ahmad F, Daud WMAW, Ahmad MA, Radzi R, Azmi AA (2013) The effects of CO2 activation, on porosity and surface functional groups of cocoa (Theobroma cacao)—Shell based activated carbon. J Environ Chem Eng 1:378–388

    Article  CAS  Google Scholar 

  25. Pinkert K, Oschatz M, Borchardt L, Klose M, Zier M, Nickel W, Giebeler L, Oswald S, Kaskel S, Eckert J (2014) Role of surface functional groups in ordered mesoporous carbide-derived carbon/ionic liquid electrolyte double-layer capacitor interfaces. ACS Appl Mater Interface 6:2922–2928

    Article  CAS  Google Scholar 

  26. Wang G, Liang R, Liu L, Zhong B (2014) Improving the specific capacitance of carbon nanotubes-based supercapacitors by combining introducing functional groups on carbon nanotubes with using redox-active electrolyte. Electrochim Acta 115:183–188

    Article  CAS  Google Scholar 

  27. Chen XL, Li WS, Tan CL, Li W, Wu YZ (2008) Improvement in electrochemical capacitance of carbon materials by nitric acid treatment. J Power Sources 184:668–674

    Article  CAS  Google Scholar 

  28. Jin H, Wang X, Gu Z, Polin J (2013) Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. J Power Sources 236:285–292

    Article  CAS  Google Scholar 

  29. Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131

    Article  CAS  Google Scholar 

  30. Huang W, Zhang Y, Bao S, Cruz R, Song S (2014) Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes. Desalination 340:67–72

    Article  CAS  Google Scholar 

  31. Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE, Yi B, Foley HC, Barsoum MW (2003) Nanoporous carbide-derived carbon with tunable pore size. Nat Mater 2:591–594

    Article  CAS  Google Scholar 

  32. Xu J, Zhang R, Wang J, Ge S, Zhou H, Liu Y, Chen P (2013) Effective control of the microstructure of carbide-derived carbon by ball-milling the carbide precursor. Carbon 52:499–508

    Article  CAS  Google Scholar 

  33. Oh YJ, Yoo JJ, Kim YI, Yoon JK, Yoon HN, Kim J-H, Park SB (2014) Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim Acta 116:118–128

    Article  CAS  Google Scholar 

  34. Han Y, Liu S, Li D, Li X (2014) Three-dimensionally hierarchical porous carbon creating high-performance electrochemical capacitors. Electrochim Acta 138:193–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work by the National Science Foundation of China (NSFC) (No. 50975247), Hebei Natural Science Foundation (No. E2014203204), and the project of science and technology plan of Hebei province (No. 12211102) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Yan, P., Zhang, R. et al. Comparative study of HNO3 activation effect on porous carbons having different porous characteristics. J Appl Electrochem 45, 849–856 (2015). https://doi.org/10.1007/s10800-015-0840-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0840-1

Keywords

Navigation