Skip to main content
Log in

Carbon-supported bimetallic Pd–Ir catalysts for alkaline sulfide oxidation in direct alkaline sulfide fuel cell

  • Short Communication
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, carbon-supported palladium (Pd) and its alloys with iridium (Ir) were investigated for the purpose of alkaline sulfide oxidation and ultimately for application as anodes in direct alkaline sulfide fuel cell (DASFC). Physical and electrochemical characterizations, such as X-ray diffraction, transmission electron microscopy, energy dispersive X-ray, cyclic voltammetry, linear sweep voltammetry, I–V analysis, and electrochemical impedance spectroscopy were carried out. Pd9Ir1/C exhibited the highest activity, showing the lowest onset potential and the highest current density, mass activity, and specific activity. The maximum power density of a DASFC single cell with a Pd9Ir1/C anode was 33.98 mW cm−2 at 70 °C, which was 35 % higher than that obtained with Pd/C. It is thought that the incorporation of more oxophilic Ir into Pd promoted the adsorption of OHads at a lower potential, and Pd9Ir1/C led to optimal OHads coverage, which played a catalytic role and thus resulted in the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Mao Z, Anani A, White RE, Srinivasan S, Appleby AJ (1991) A modified electrochemical process for the decomposition of hydrogen sulfide in an aqueous alkaline solution. J Electrochem Soc 138:1299–1303. doi:10.1149/1.2085775

    Article  CAS  Google Scholar 

  2. Anani A, Mao Z, White RE, Srinivasan S, Appleby AJ (1990) Electrochemical production of hydrogen and sulfur by low-temperature decomposition of hydrogen sulfide in an aqueous alkaline solution. J Electrochem Soc 137:2703–2709. doi:10.1149/1.2087021

    Article  CAS  Google Scholar 

  3. Liu M, He P, Luo JL, Sanger AR, Chuang KT (2001) Performance of a solid oxide fuel cell utilizing hydrogen sulfide as fuel. J Power Sources 94:20–25. doi:10.1016/S0378-7753(00)00660-1

    Article  CAS  Google Scholar 

  4. He P, Liu M, Luo JL, Sanger AR, Chuang KT (2002) Stabilization of platinum anode catalyst in a H2S–O2 solid oxide fuel cell with an intermediate TiO2 layer. J Electrochem Soc 149:A808–A814. doi:10.1149/1.1479156

    Article  CAS  Google Scholar 

  5. Slavov SV, Chuang KT, Sanger AR, Donini JC, Kot J, Petrovic S (1998) A proton-conducting solid state H2S–O2 fuel cell. 1. Anode catalysts, and operation at atmospheric pressure and 20–90 °C. Int J Hydrogen Energy 23:1203–1212. doi:10.1016/S0360-3199(98)00003-2

    Article  CAS  Google Scholar 

  6. Chuang KT, Donini JC, Sanger AR, Slavov SV (2000) A proton-conducting solid state H2S–O2 fuel cell. 2. Production of liquid sulfur at 120–145 °C. Int J Hydrogen Energy 25:887–894. doi:10.1016/S0360-3199(00)00009-4

    Article  CAS  Google Scholar 

  7. Kim K, Han JI (2014) Performance of direct alkaline sulfide fuel cell without sulfur deposition on anode. Int J Hydrogen Energy 39:7142–7146. doi:10.1016/j.ijhydene.2014.02.085

    Article  CAS  Google Scholar 

  8. Kim K, Kim HT, Han JI (2015) Compatibility of platinum with alkaline sulfide fuel: Effectiveness and stability of platinum as an anode catalyst in direct alkaline sulfide fuel cell. Int J Hydrogen Energy 40:4141–4145. doi:10.1016/j.ijhydene.2015.01.160

    Article  CAS  Google Scholar 

  9. Kim K, Son J, Han JI (2014) Metal sulfides as anode catalysts in direct alkaline sulfide fuel cell. Int J Hydrogen Energy 39:10493–10497. doi:10.1016/j.ijhydene.2014.04.208

    Article  CAS  Google Scholar 

  10. Kim K, Han JI (2015) Heteropolyacids as anode catalysts in direct alkaline sulfide fuel cell. Int J Hydrogen Energy 40:2979–2983. doi:10.1016/j.ijhydene.2015.01.011

    Article  CAS  Google Scholar 

  11. Kim K, Han JI (2015) Carbon supported bimetallic Pd–Co catalysts for alkaline sulfide oxidation in direct alkaline sulfide fuel cell. Int J Hydrogen Energy 40:4567–4572. doi:10.1016/j.ijhydene.2015.02.009

    Article  CAS  Google Scholar 

  12. Aldea R, Alper H (1995) Selective aerobic oxidation of sulfides using a novel palladium complex as the catalyst precursor. J Org Chem 60:8365–8366. doi:10.1021/jo00131a009

    Article  CAS  Google Scholar 

  13. Li X, Huang Q, Zou Z, Xia B, Yang H (2008) Low temperature preparation of carbon-supported Pd Co alloy electrocatalysts for methanol-tolerant oxygen reduction reaction. Electrochim Acta 53:6662–6667. doi:10.1016/j.electacta.2008.04.032

    Article  CAS  Google Scholar 

  14. Gharibi H, Farhad Golmohammadi, Kheirmand M (2013) Fabrication of MEA based on optimum amount of Co in PdxCo/C alloy nanoparticles as a new cathode for oxygen reduction reaction in passive direct methanol fuel cells. Electrochim Acta 89:212–221. doi:10.1016/j.electacta.2012.10.147

    Article  CAS  Google Scholar 

  15. Wang Y, Zhao Y, Yin J, Liu M, Dong Q, Su Y (2014) Synthesis and electrocatalytic alcohol oxidation performance of Pd–Co bimetallic nanoparticles supported on graphene. Int J Hydrogen Energy 39:1325–1335. doi:10.1016/j.ijhydene.2013.11.002

    Article  CAS  Google Scholar 

  16. Lee KR, Woo SI (2014) Promoting effect of Ni on PdCo alloy supported on carbon for electrochemical oxygen reduction reaction. Catal Today 232:171–174. doi:10.1016/j.cattod.2013.10.010

    Article  CAS  Google Scholar 

  17. Zhang Z, Xin L, Sun K, Li W (2011) Pd–Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. Int J Hydrogen Energy 36:12686–12697. doi:10.1016/j.ijhydene.2011.06.141

    Article  CAS  Google Scholar 

  18. Shen SY, Zhao TS, Xu JB (2010) Carbon-supported bimetallic PdIr catalysts for ethanol oxidation in alkaline media. Electrochim Acta 55:9179–9184. doi:10.1016/j.electacta.2010.09.018

    Article  CAS  Google Scholar 

  19. Assumpção MHMT, da Silva SG, De Souza RFB, Buzzo GS, Spinacé EV, Santos MC, Neto AO, Silva JCM (2014) Investigation of PdIr/C electrocatalysts as anode on the performance of direct ammonia fuel cell. J Power Sources 268:129–136. doi:10.1016/j.jpowsour.2014.06.025

    Article  Google Scholar 

  20. Wang X, Tang Y, Gao Y, Lu T (2008) Carbon-supported Pd–Ir catalyst as anodic catalyst in direct formic acid fuel cell. J Power Sources 175:784–788. doi:10.1016/j.jpowsour.2007.10.011

    Article  CAS  Google Scholar 

  21. Assumpção MHMT, da Silva SG, De Souza RFB, Buzzo GS, Spinacé EV, Neto AO, Silva JCM (2014) Direct ammonia fuel cell performance using PtIr/C as anode electrocatalysts. Int J Hydrogen Energy 39:5148–5152. doi:10.1016/j.ijhydene.2014.01.053

    Article  Google Scholar 

  22. Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D et al (2013) Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 5:300–306. doi:10.1038/nchem.1574

    Article  Google Scholar 

  23. Liu J, Zhou Z, Zhao X, Xin Q, Sun G, Yi B (2004) Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test. Phy Chem Chem Phys 6:134–137. doi:10.1039/b313478d

    Article  CAS  Google Scholar 

  24. He C, Kunz HR, Fenton JM (1997) Evaluation of platinum-based catalysts for methanol electro-oxidation in phosphoric acid electrolyte. J Electrochem Soc 144:970–979. doi:10.1149/1.1837515

    Article  Google Scholar 

  25. Yuan X, Wang H, Sun JC, Zhang J (2007) AC impedance technique in PEM fuel cell diagnosis—a review. Int J Hydrogen Energy 32:4365–4380. doi:10.1016/j.ijhydene.2007.05.036

    Article  CAS  Google Scholar 

  26. Hsu NY, Yen SC, Jeng KT, Chien CC (2006) Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives. J Power Sou 161:232–239. doi:10.1016/j.jpowsour.2006.03.076

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean Ministry of Science, ICT and Future Planning (NRF-2012M1A2A2026587) and a grant from the Advanced Biomass R&D Center (ABC) of Korea funded by the Ministry of Science, ICT and Future Planning (ABC-2012053875).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-In Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Han, JI. Carbon-supported bimetallic Pd–Ir catalysts for alkaline sulfide oxidation in direct alkaline sulfide fuel cell. J Appl Electrochem 45, 533–539 (2015). https://doi.org/10.1007/s10800-015-0835-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0835-y

Keywords

Navigation