Skip to main content
Log in

Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Bimetallic alloy nanoparticles (NPs) of two coinage metals, Au and Ag, were successfully synthesized by a co-precipitation method. These NPs were prepared by a chemical method involving the reduction of HAuCl4 and AgNO3 in an aqueous solution of 2 % hydrazine as a reducing agent, iso-octane as a co-precipitator, cetyl trimethyl ammonium bromide as a capping agent, and deionized water as a solvent. The newly synthesized bimetallic alloy NPs were characterized by electronic absorption spectroscopy. The NPs were further characterized by scanning electron microscopy, transmission electron microscopy (TEM), and energy-dispersive spectroscopy. TEM evidenced the formation of NPs with a diameter ranging from 25 to 35 nm. For the development of electrochemical sensor, glassy carbon electrode (GCE) was modified with potentiodynamic polymerization of pyrrole, called polypyrrole (PPy). PPy was over-oxidized in order to increase its sensitivity toward polyaromatic hydrocarbons. The electrode was further modified with Au–Ag bimetallic alloy NPs. The fabricated GCE was successfully applied to detect an environmental toxin, pyrene. The electrochemical behavior of pyrene at the composite electrode (PPyox/Au–Ag NPs/GCE) was optimized by changing the atomic ratio of Au and Ag in Au–Ag bimetallic alloy NPs. At the Au and Ag ratio of 1:3, pyrene was detected with a detection limit of 0.1 µM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Banadaki AD, Kajbafvala A (2014) Recent advances in facile synthesis of bimetallic nanostructures. J Nanomater 10:1–28

    Article  Google Scholar 

  2. Raveendran P, Fu J, Wallen SL (2006) A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem 8:34–38

    Article  CAS  Google Scholar 

  3. Liu Z, Yang Z, Peng B, Cao C, Zhang C, You H, Xiong Q, Li Z, Fang J (2014) Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au–Ag alloy nanourchins. Adv Mater 26:2431–2439

    Article  CAS  Google Scholar 

  4. Michael PM, Catherine JM (2002) Solution phase synthesis of sub-10 nm Au–Ag alloy nanoparticles. Nano Lett 2:1235–1237

    Article  Google Scholar 

  5. Crespo J, Falqui A, García-Barrasa J, Lopez-de-Luzuriaga JM, Monge M, Olmos ME, Rodríguez-Castillo M, Sestu M, Soulantica K (2014) Synthesis and plasmonic properties of monodisperse Au–Ag alloy nanoparticles of different compositions from a single-source organometallic precursor. J Mater Chem C 2:2975–2984

    Article  CAS  Google Scholar 

  6. Patskovsky S, Bergeron E, Rioux D, Simard M, Meunier M (2014) Hyperspectral reflected light microscopy of plasmonic Au/Ag alloy nanoparticles incubated as multiplex chromatic biomarkers with cancer cells. Analyst 139:5247–5253

    Article  CAS  Google Scholar 

  7. Kim K, Kim KL, Shin KS (2013) Effect of organic vapors on Au, Ag, and Au–Ag alloy nanoparticles films with adsorbed 2,6-dimethylphenyl isocyanides. J Colloid Interface Sci 411:194–197

    Article  CAS  Google Scholar 

  8. Zhang Y, Gao G, Liu H, Fu H, Fan J, Wang K, Chen Y, Li B, Zhang C, Zhi X, He L, Daxiang CD (2014) Identification of volatile biomarkers of gastric cancer cells and ultrasensitive electrochemical detection based on sensing interface of Au–Ag alloy coated MWCNTs. Theranostics 4:154–162

    Article  CAS  Google Scholar 

  9. Liu Z, Cheng L, Zhang L, Yang Z, Liu Z, Fang J (2014) Sub-100 nm hollow Au–Ag alloy urchin-shaped nanostructure with ultrahigh density of nanotips for photothermal cancer therapy. Biomaterials 35:4099–4107

    Article  CAS  Google Scholar 

  10. Pschenitza M, Hackenberg R, Niessner R, Knopp D (2014) Analysis of benzo[a]pyrene in vegetable oils using molecularly imprinted solid phase extraction (MISPE) coupled with enzyme-linked immunosorbent assay (ELISA). Sensors 14:9720–9737

    Article  CAS  Google Scholar 

  11. White PA, Rasmussen JB, Blaise C (1996) Comparing the presence, potency, and potential hazard of genotoxins extracted from a broad range of industrial effluents. Environ Mol Mutagen 27:116–139

    Article  CAS  Google Scholar 

  12. Coster SD, Larebeke N (2012) Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health 2012:1–52

  13. Beltran JL, Ferrer R, Guiteras M (1998) Multivariate calibration of polycyclic aromatic hydrocarbon mixtures from excitation–emission fluorescence spectra. Anal Chim Acta 373:311–319

    Article  CAS  Google Scholar 

  14. Mailu SN, Waryo TT, Ndangili PM, Ngece FR, Baleg AA, Baker PG, Iwuoha EI (2010) Determination of anthracene on Ag–Au alloy nanoparticles/overoxidized-polypyrrole composite modified glassy carbon electrodes. Sensors 10:9449–9465

    Article  CAS  Google Scholar 

  15. Gimeno RA, Beltran JL, Marce RM, Borrull F (2000) Determination of naphthalene sulfonates in water by on-line ion-pair solid-phase extraction and ion-pair liquid chromatography with fast-scanning fluorescence detection. J Chromatogr A 890:289–294

    Article  CAS  Google Scholar 

  16. Carrara M, Niessner R (2011) Impact of a NO2-regenerated diesel particulate filter on PAH and NPAH emissions from a EURO IV heavy duty engine. J Environ Monit 13:3373–3379

    Article  CAS  Google Scholar 

  17. Gonzalez M, Liu X, Niessner R, Haisch C (2010) Lead ion detection in turbid media by pulsed photoacoustic spectrometry based on dissolution of gold nanoparticles. Sens Actuators, B 150:770–773

    Article  CAS  Google Scholar 

  18. Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and antibacterial activity of Cu, Ag and Cu/Ag alloy nanoparticles. Mater Res Bull 46:384–389

    Article  CAS  Google Scholar 

  19. Selvaraj S, Alagar M, Hamerton I (2006) Electrocatalytic properties of monometallic and bimetallic nanoparticles for oxidation of methanol. J Power Sources 160:940–948

    Article  CAS  Google Scholar 

  20. Qian L, Yang X (2005) Preparation and characterization of Ag(Au) core–shell nanoparticles with new seed growth method. Colloid Surf A 260:79–85

    Article  CAS  Google Scholar 

  21. Devarajan S, Vimalan B, Sampath S (2004) Phase transfer of Au–Ag alloy nanoparticles from aqueous medium to organic solvent. J Colloid Interface Sci 278:126–132

    Article  CAS  Google Scholar 

  22. Rahman L, Qureshi R, Yasinzai MM, Shah A (2012) Synthesis and characterization of Ag–Cu alloy nanoparticles prepared in various ratios. C R Chim 15:533–538

    Article  CAS  Google Scholar 

  23. Pal A, Shah S, Devi S (2007) Preparation of silver, gold and silver–gold bimetallic nanoparticles in O/W microemulsion. J Colloid Surf A 302:483–487

    Article  CAS  Google Scholar 

  24. Lim B, Kobayashi H, Yu T, Wang J, Kim MJ, Li ZY, Rycenga M, Xia Y (2010) Synthesis of Pd–Au bimetallic nanocrystals via controlled overgrowth. J Am Chem Soc 132:2506–2507

    Article  CAS  Google Scholar 

  25. Mondal S, Roy N, Laskar RA, Sk I, Basu S, Mandal D, Begum NA (2011) Bioorganic synthesis of Ag, Au and Ag–Au alloy nanoparticles using aqueous extract of mahogany leaves. Colloids Surf B 82:497–504

    Article  CAS  Google Scholar 

  26. Shah A, Rahman L, Qureshi R, Rehman Z (2012) Synthesis, characterization and applications of bimetallic (Ag–Au, Au–Pt and Au–Ru) alloy nanoparticles. Rev Adv Mater Sci 30:133–149

    CAS  Google Scholar 

  27. Shin KS, Kim JH, Kim IH, Kim K (2012) Novel fabrication and catalytic application of PEI stabilized Au–Ag nanoparticles. J Nanopart Res 14:735

    Article  Google Scholar 

  28. Huang YF, Huang KM, Chang HT (2006) Synthesis and characterization of core Au and shell Ag nanoparticles for Au seeds. J Colloid Interface Sci 301:145–154

    Article  CAS  Google Scholar 

  29. Liu X, Wang A, Li L, Zhang T, Mou CY, Lee JF (2013) Synthesis of Ag–Au alloy nanoparticles supported on silica gel via galvanic replaced reaction. Prog Nat Sci Mater Int 23:317–325

    Article  Google Scholar 

  30. Lin Z, Sauceda-Friebe JC, Lin JM, Niessner R, Knopp D (2010) Double-codified gold nanoparticle based automated high-throughput chemiluminescence immunoassay for 2,4-dinitrotoluene. Anal Methods 2:824–830

    Article  CAS  Google Scholar 

  31. Lu Y, Shi G, Li C, Liang Y (1998) Thin polypyrrole films prepared by chemical oxidative polymerization of heterocyclic compounds. J Heterocycl Chem 15:67–70

    Google Scholar 

  32. Huanga J, Heb Y, Jina J, Lia Y, Donga Z, Li R (2014) A novel glucose sensor based on MoS2 nanosheet functionalized with Ni nanoparticles. Electrochim Acta 136:41–46

    Article  Google Scholar 

  33. Ratautaite V, Ramanaviciene A, Oztekin Y, Voronovic J, Balevicius Z, Mikoliunaite L, Ramanavicius A (2013) Electrochemical stability and repulsion of polypyrrole film. Colloids Surf A 418:16–21

    Article  CAS  Google Scholar 

  34. Guerra-Balcazar M, Torres-Gonzalez J, Terol-Villalobos I, Morales-Hernandez J, Castaneda F (2012) Glassy carbon electrode-supported Au nanoparticles for the glucose electrooxidation: on the role of crystallographic orientation. J Nanomater 12:8–16

    Google Scholar 

  35. Mascini M (2005) Enzyme-based optical-fibre biosensors. Sens Actuators, B 29:121–125

    Article  Google Scholar 

  36. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    Article  CAS  Google Scholar 

  37. Wang X, Yang T, Feng Y, Jiao K, Li G (2009) A Novel hydrogen peroxide biosensor based on the synergistic effect of gold–platinum alloy nanoparticles/polyaniline nanotube/chitosan nanocomposite membrane. Electroanalysis 21:819–825

    Google Scholar 

Download references

Acknowledgments

This work was jointly supported by Chemistry Department of Quaid-i-Azam University, Islamabad and National Center of Excellence in Physical Chemistry University of Peshawar. The financial support of Higher Education Commission of Pakistan and University of Toronto Scarborough, Canada is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afzal Shah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif-ur-Rahman, Shah, A., Khan, S.B. et al. Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. J Appl Electrochem 45, 463–472 (2015). https://doi.org/10.1007/s10800-015-0807-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0807-2

Keywords

Navigation