Skip to main content
Log in

One-step synthesis of self-supporting tin oxide/graphene electrodes for lithium ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A self-supporting binder-free tin oxide (SnO2) graphene nanocomposite electrode was synthesized through a novel one step solvothermal treatment of graphene oxide (GO) paper. To characterize this electrode X-ray Diffraction, Scanning Electron Microscopy, Atomic Force Microscopy, Raman spectroscopy, Energy-dispersive X-ray spectroscopy, cyclic voltammetry, and constant current galvanic cycling were performed. The solvothermal treatment simultaneously coats amorphous carbon and SnO2 nanoparticles onto the surface of GO paper, while reducing the GO nanosheets to graphene nanosheets (GNS). This creates a SnO2/GNS film that is flexible, free-standing, and can be used as the negative electrode in lithium ion batteries to deliver a reversible capacity of 400 mA h g−1 after repeated cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hossain S (1984) Rechargeable lithium batteries (ambient temperature). In: Linden D (ed) Handbook of batteries, vol 30, 2nd edn. McGraw-Hill Inc, New York, pp 36.31–36.44

    Google Scholar 

  2. Doughty D, Roth PE (2012) A general discussion of Li ion battery safety. Electrochem Soc Interface 21(2):37–44

    CAS  Google Scholar 

  3. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946

    Article  CAS  Google Scholar 

  4. Chen CM, Zhang Q, Huang JQ, Zhang W, Zhao XC, Huang CH, Wei F, Yang YG, Wang MZ, Su DS (2012) Chemically derived graphene-metal oxide hybrids as electrodes for electrochemical energy storage: pre-graphenization or post-graphenization? J Mater Chem 22(28):13947–13955

    Article  CAS  Google Scholar 

  5. Li J, Zhao Y, Wang N, Guan L (2011) A high performance carrier for SnO2 nanoparticles used in lithium ion battery. Chem Commun 47(18):5238–5240

    Article  CAS  Google Scholar 

  6. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium ion batteries prepared by homogenous coprecipitation. J Power Sour 196(15):6473–6477

    Article  CAS  Google Scholar 

  7. U.S. Department of Health and Human Services (2005) Production, import/export, use, and disposal. In: Toxicological profile for tin and tin compounds. Agency for toxic substances and disease registry. U.S. Department of Health and Human Services, Washington, DC, pp 243–248

  8. Tao HC, Fan LZ, Mei Y, Qu X (2011) Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries. Electrochem Commun 13(12):1332–1335

    Article  CAS  Google Scholar 

  9. Chen Z, Zhou M, Cao Y, Ai X, Yang H, Liu J (2012) In situ generation of few-layer graphene coatings on SnO2-SiC core-shell nanoparticles for high-performance lithium-ion storage. Adv Energy Mater 2(1):95–102

    Article  CAS  Google Scholar 

  10. Li X, Meng X, Liu J, Geng D, Zhang Y, Banis MN, Li Y, Yang J, Li R, Sun X, Cai M, Verbrugge MW (2012) Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv Funct Mater 22(8):1647–1654

    Article  CAS  Google Scholar 

  11. Zhang HX, Feng C, Zhai YC, Jiang KL, Li QQ, Fan SS (2009) Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries. Adv Mater 21(22):2299–2304

    Article  CAS  Google Scholar 

  12. Szabo DV, Kilibarda G, Schlabach S, Trouillet V, Bruns M (2012) Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries. J Mater Sci 47(10):4383–4391

    Article  CAS  Google Scholar 

  13. Kim JH, Khanal S, Islam M, Khatri A, Choi D (2008) Electrochemical characterization of vertical arrays of tin nanowires grown on silicon substrates as anode materials for lithium rechargeable microbatteries. Electrochem Commun 10(11):1688–1690

    Article  CAS  Google Scholar 

  14. Park MS, Wang GX, Kang YM, Wexler D, Dou SX, Liu HK (2007) Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew Chem Int Ed 46(5):750–753

    Article  CAS  Google Scholar 

  15. Xia X, Li S, Wang X, Liu J, Wei Q, Zhang X (2013) Structures and properties of SnO2 nanofibers derived from two different polymer intermediates. J Mater Sci 48(9):3378–3385

    Article  CAS  Google Scholar 

  16. Wang J, Du N, Zhang H, Yu J, Yang D (2011) Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries. J Phys Chem C 115(22):11302–11305

    Article  CAS  Google Scholar 

  17. Liu H, Huang J, Li X, Liu J, Zhang Y (2012) One-step hydrothermal synthesis of flower-like SnO2/carbon nanotubes composite and its electrochemical properties. J Sol-Gel Sci Technol 63(3):569–572

    Article  CAS  Google Scholar 

  18. Zou Y, Wang Y (2011) Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano 5(10):8108–8114

    Article  CAS  Google Scholar 

  19. Chen T, Pan L, Liu X, Yu K, Sun Z (2012) One-step synthesis of SnO2-reduced graphene oxide-carbon nanotube composites via microwave assistance for lithium ion batteries. R Soc Chem Adv 2(31):11719–11724

    CAS  Google Scholar 

  20. Wen Z, Cui S, Kim H, Mao S, Yu K, Lu G, Pu H, Mao O, Chen J (2012) Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries. J Mater Chem 22(8):3300–3306

    Article  CAS  Google Scholar 

  21. Sathish M, Mitani S, Tomai T, Unemoto A, Honma I (2012) Nanocrystalline tin compounds/graphene nanocomposite electrodes as anode for lithium-ion battery. J Solid State Electrochem 16(5):1767–1774

    Article  CAS  Google Scholar 

  22. Sathish M, Mitani S, Tomai T, Honma I (2012) Ultrathin SnS2 nanoparticles on graphene nanosheets: synthesis, characterization, and Li-ion storage applications. J Phys Chem C 116(23):12475–12481

    Article  CAS  Google Scholar 

  23. Luo B, Wang B, Li XL, Jia YY, Liang MH, Zhi LJ (2012) Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv Mater 24(26):3538–3543

    Article  CAS  Google Scholar 

  24. Wang G, Wang B, Wang X, Park J, Dou S, Ahn H, Kim K (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19(44):8378–8384

    Article  CAS  Google Scholar 

  25. Jiang S, Yue W, Gao Z, Ren Y, Ma H, Zhao X, Liu Y, Yang X (2013) Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries. J Mater Sci 48(10):3870–3876

    Article  CAS  Google Scholar 

  26. Lian P, Wang J, Cai D, Ding L, Jia Q, Wang H (2014) Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochim Acta 116(10):103–110

    Article  CAS  Google Scholar 

  27. Zhu J, Wang D, Wang L, Lang X, You W (2013) Facile synthesis of sulfur coated SnO2-graphene nanocomposites for enhanced lithium ion storage. Electrochim Acta 91(28):323–329

    Article  CAS  Google Scholar 

  28. Zhao B, Zhang G, Song J, Jiang Y, Zhuang H, Liu P, Fang T (2011) Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochim Acta 56(21):7340–7346

    Article  CAS  Google Scholar 

  29. Yue W, Yang S, Ren Y, Yang X (2013) In situ growth of Sn, SnO on graphene nanosheets and their application as anode materials for lithium-ion batteries. Electrochim Acta 92(1):412–420

    Article  CAS  Google Scholar 

  30. Liang S, Zhu X, Lian P, Yang W, Wang H (2011) Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries. J Solid State Chem 184(6):1400–1404

    Article  CAS  Google Scholar 

  31. Wu P, Du N, Liu J, Zhang H, Yu J, Yang D (2011) Solvothermal synthesis of carbon-coated tin nanorods for superior reversible lithium ion storage. Mater Res Bull 46(12):2278–2282

    Article  CAS  Google Scholar 

  32. Qiao H, Zheng Z, Zhang L, Xiao L (2008) SnO2@C core-shell spheres: synthesis, characterization, and performance in reversible Li-ion storage. J Mater Sci 43(8):2778–2784

    Article  CAS  Google Scholar 

  33. Li X, Zhong Y, Cai M, Balogh MP, Wang D, Zhang Y, Li R, Sun X (2013) Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries. Electrochim Acta 89(1):387–393

    Article  CAS  Google Scholar 

  34. Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9(4):353–358

    Article  CAS  Google Scholar 

  35. Yao J, Shen XP, Wang B, Liu H, Wang GX (2009) In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11(10):1849–1852

    Article  CAS  Google Scholar 

  36. Zhong C, Wang J, Chen Z, Liu H (2011) SnO2-graphene composite synthesized via an ultrafast and environmentally friendly microwave autoclave method and its use as a superior anode for lithium-ion batteries. J Phys Chem C 115(50):25115–25120

    Article  CAS  Google Scholar 

  37. Hassan FM, Chen Z, Yu A, Chen Z, Xiao X (2013) Sn/SnO2 embedded in mesoporous carbon nanocomposites as negative electrode for lithium ion batteries. Electrochim Acta 87(1):844–852

    Article  CAS  Google Scholar 

  38. Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope MA, Aksay IA (2010) Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 4(3):1587–1595

    Article  CAS  Google Scholar 

  39. Lee JK, Smith KB, Hayner CM, Kung HH (2010) Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem Commun 46(12):2025–2027

    Article  CAS  Google Scholar 

  40. Zhao X, Hayner CM, Kung MC, Kung HH (2011) In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Adv Energy Mater 1(6):1079–1084

    Article  CAS  Google Scholar 

  41. Liu F, Song S, Xue D, Zhang H (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24(8):1089–1094

    Article  CAS  Google Scholar 

  42. Gwon H, Kim HS, Lee KU, Seo DH, Park YC, Lee YS, Ahn BT, Kang K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4(4):1277–1283

    Article  CAS  Google Scholar 

  43. Abouimrane A, Compton OC, Amine K, Nguyen ST (2010) Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J Phys Chem C 114(29):12800–12804

    Article  CAS  Google Scholar 

  44. Wang C, Li D, Too CO, Wallace GG (2009) Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater 21(13):2604–2606

    Article  CAS  Google Scholar 

  45. Liu S, Chen K, Fu Y, Yu S, Bao Z (2012) Reduced graphene oxide paper by supercritical ethanol treatment and its electrochemical properties. Appl Surf Sci 258(13):5299–5303

    Article  CAS  Google Scholar 

  46. Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15):4466–4474

    Article  CAS  Google Scholar 

  47. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460

    Article  CAS  Google Scholar 

  48. Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561

    Article  CAS  Google Scholar 

  49. Myung ST, Hitoshi Y, Sun YK (2011) Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J Mater Chem 21(27):9891–9911

    Article  CAS  Google Scholar 

  50. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  51. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support of the Chemical and Biomolecular engineering department and the Center for Electrochemical Engineering Research at Ohio University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardine G. Botte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gildea, A.N., Wang, D. & Botte, G.G. One-step synthesis of self-supporting tin oxide/graphene electrodes for lithium ion batteries. J Appl Electrochem 45, 217–224 (2015). https://doi.org/10.1007/s10800-015-0787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0787-2

Keywords

Navigation