Skip to main content
Log in

Electrochemical performance of Zr-doped Li3V2(PO4)3/C composite cathode materials for lithium ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Zr-doped Li3V2–4x/3Zr x (PO4)3/C (x = 0, 0.05, 0.1, 0.15 or 0.2) composite cathode materials for lithium ion batteries had been prepared by a sol-gel method and characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, four-point probe measurements and electrochemical analyses. The cell volumes of the Zr-doped samples were larger than that of Li3V2(PO4)3, and Zr had an oxidation number of +4 in Zr-doped Li3V2–4x/3Zr x (PO4)3. The charge-transfer resistance of Li3V2(PO4)3/C was reduced and the reversibility was enhanced after Zr doping. All Zr-doped samples exhibited better electrochemical performance than pristine sample, and Li3V1.87Zr0.1(PO4)3/C composite displayed the highest capacity and the best cycle performance. The improved electrochemical performance mechanism for Zr-doped samples was discussed with respect to electronic structures using first-principle calculations. Zr doping did not significantly change the crystal structure of Li3V2(PO4)3, however, slight alterations in the lattice parameters and unit cell volume were observed. Li3V2(PO4)3 was affected by Zr doping at the V site with a narrower band gap as a result of the holes generated by activation of electrons to empty Zr states, leading to enhanced electronic conductivity of doped samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yamada A, Chung SC (2001) Crystal chemistry of the olivine-type Li(MnyFe1−y) PO4 and (MnyFe1−y)PO4 as possible 4 V cathode materials for lithium batteries. J Electrochem Soc 148(8):A960

    Article  CAS  Google Scholar 

  2. Rui XH, Yesibolati N, Chen CH (2011) Li3V2(PO4)3/C composite as an intercalation-type anode material for lithium-ion batteries. J Power Sour 196:2279

    Article  CAS  Google Scholar 

  3. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  4. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  5. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–125

    Article  CAS  Google Scholar 

  6. Huang H, Yin S, Kerr T, Taylor N, Nazar LF (2002) Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv Mater 14:1525

    Article  CAS  Google Scholar 

  7. Huang H, Faulkner T, Barker J, Saidi MY (2009) Lithium metal phosphates, power and automotive applications. J Power Sour 189:748–751

    Article  CAS  Google Scholar 

  8. Wang L, Zhang LC, Lieberwirth I, Xu HW, Chen CH (2009) High capacity and excellent cyclability of vanadium (IV) oxide in lithium battery applications. Electrochem Commun 11:538–541

    Article  Google Scholar 

  9. Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G (2003) Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries. J Power Sour 121:266–272

    Article  Google Scholar 

  10. Yao JH, Wei SS, Zhang PJ et al (2012) Synthesis and properties of Li3V2−x Ce x (PO4)3/C cathode materials for Li-ion batteries. J Alloys Compd 532:9

    Article  Google Scholar 

  11. Dai CS, Chen ZY, Jin HZ, Hu XG (2010) Synthesis and performance of Li3(V1−x Mg x )2(PO4)3 cathode materials. J Power Sour 195:5775–5779

    Article  CAS  Google Scholar 

  12. Zhang LL, Liang G, Peng G, Jiang Y, Fang H, Huang YH, Croft MC, Ignatov A (2013) Evolution of electrochemical performance in Li3V2(PO4)3/C composites caused by cation incorporation. Electrochim Acta 108:182–190

    Article  CAS  Google Scholar 

  13. Son JN, Kim SH, Kim MC, Kim GJ, Aravindan V, Lee YG, Lee YS (2013) Superior charge-transfer kinetics of NASICON-type Li3V2(PO4)3 cathodes by multivalent Al3+ and Cl substitutions. Electrochim Acta 97:210–215

    Article  CAS  Google Scholar 

  14. Dang JX, Xiang F, Gu NY, Zhang RB, Mukherjee R, Il-Kwon Oh, Koratkar N, Yang ZY (2013) Synthesis and electrochemical performance characterization of Ce-doped Li3V2(PO4)3/C as cathode materials for lithium-ion batteries. J Power Sour 243:33–39

    Article  CAS  Google Scholar 

  15. Chen YH, Zhao YM, An XN, Liu JM, Dong YZ, Chen L (2009) Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim Acta 54:5844–5850

    Article  CAS  Google Scholar 

  16. Liu SQ, Li SC, Huang KL, Chen ZH (2007) Effect of doping Ti4+ on the structure and performances of Li3V2(PO4)3. Acta Phys Chim Sin 23:537–542

    Article  CAS  Google Scholar 

  17. Yuan W, Yan J, Tang ZY, Sha Ou, Wang JM, Mao WF, Ma L (2012) Mo-doped Li3V2(PO4)3/C cathode material with high rate capability and long term cyclic stability. Electrochim Acta 72:138–142

    Article  CAS  Google Scholar 

  18. Bai GL, Yang YF, Shao HX (2013) Synthesis and electrochemical properties of polyhedron-shaped Li3V2-x Sn x (PO4)3 as cathode material for lithium-ion batteries. J Electroanal Chem 688:98–102

    Article  CAS  Google Scholar 

  19. Chen QQ, Qiao XC, Wang YB, Zhang TT, Yin WM, Liu L (2012) Electrochemical performance of Li3−x Na x V2(PO4)3/C composite cathode materials for lithium ion batteries. J Power Sour 201:267–273

    Article  CAS  Google Scholar 

  20. Sato M, Ohkawa H, Yoshida K, Saito M, Uematsu K, Toda K (2000) Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature. Solid State Ionics 135:137–142

    Article  CAS  Google Scholar 

  21. Ouyang CY, Shi SQ, Wang ZX et al (2004) First principles study of Li ion diffusion in LiFePO4. Phys Rev B 69:104303

    Article  Google Scholar 

  22. Shi SQ, Ouyang CY, Xiong ZH et al (2005) First-principles investigation of the structural, magnetic, and electronic properties of olivine LiFePO4. Phys Rev B 71:144404

    Article  Google Scholar 

  23. Jiang J, Ouyang CY, Li H, Wang ZX, Huang XJ, Chen LQ (2007) First-principles study on electronic structure of LiFePO4. Solid State Commun 143:144

    Article  CAS  Google Scholar 

  24. Perdew JP, Chevary JA, Vosko SH et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  25. Monkhorst HJ, Pack J (1976) Integrand smooth (for non-metals): replace integral by sum over sampling points. Phys Rev B 13:5188

    Article  Google Scholar 

  26. Ma B, Li Y, Su K (2009) Characterization of ceria-yttria stabilized zirconia plasma-sprayed coatings. Appl Sur Sci 255:7234–7237

    Article  CAS  Google Scholar 

  27. Rui XH, Li C, Chen CH (2009) Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources. Electrochim Acta 54:3374–3380

    Article  CAS  Google Scholar 

  28. Qiao YQ, Tu JP, Wang XL, Gu CD (2012) The low and high temperature electrochemical performances of Li3V2(PO4)3/C cathode material for Li-ion batteries. J Power Sour 199:288

    Article  Google Scholar 

  29. Chen QQ, Wang JM, Tang Z et al (2007) Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol-gel method. Electrochim Acta 52:5253

    Google Scholar 

  30. Kuang Q, Zhao YM, An XN, Liu JM, Dong YZ, Chen L (2010) Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochim Acta 55:1577

    Article  Google Scholar 

  31. Cetinkaya T, Akbulut A, Guler MO, Akbulut H (2014) A different method for producing a flexible LiMn2O4/MWCNT composite electrode for lithium ion batteries. J Appl Electrochem 44:213

    Article  Google Scholar 

  32. Ai DJ, Liu KY, Lu ZG, Zou MM, Zeng DQ, Ma J (2011) Aluminothermal synthesis and characterization of Li3V2−x Al x (PO4)3 cathode materials for lithium ion batteries. Electrochim Acta 56:2826

    Article  Google Scholar 

  33. Yin SC, Strobel PS, Grondey H et al (2004) Charge ordering in lithium vanadium phosphates: electrode materials for lithium-ion batteries. Chem Mater 16:1456–1459

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Education Department Project of Heilongjiang Province (Grant No. 12531541) and the Dr. Fund of Heilongjiang Institute of Technology (Grant No. 2011BJ13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Chen, G., Zhang, H. et al. Electrochemical performance of Zr-doped Li3V2(PO4)3/C composite cathode materials for lithium ion batteries. J Appl Electrochem 45, 123–130 (2015). https://doi.org/10.1007/s10800-014-0782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0782-z

Keywords

Navigation