Skip to main content
Log in

Physical and electrochemical characteristics of carbon content in carbon-coated Li2MnSiO4 for rechargeable lithium batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon-coated Li2MnSiO4 powders were synthesized by a citric acid-assisted sol–gel process, and their physical and electrochemical properties were characterized to assess their suitability as a cathode material in lithium-rechargeable batteries. Carbon was coated onto the Li2MnSiO4 particles through the carbonization of polymeric materials that were caused by the addition of citric acid during the sol–gel process. The particle size and electrical conductivity of the Li2MnSiO4 powders were found to be changed by varying the amount of citric acid added during the sol–gel process. XRD analysis showed that the quantity of impurities in Li2MnSiO4 was decreased during the sol–gel process. The carbon coating led to an increase in conductivity and mean particle size by creating an electrical and physical connection between the particles. The discharge capacity of Li2MnSiO4 with over 5 % carbon coating was significantly increased to ~125 mAh g−1 compared to just ~3 mAh g−1 for noncoated material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy AK, Masquelier C, Okada C, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613

    Article  CAS  Google Scholar 

  2. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  3. Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB (1997) Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J Electrochem Soc 144:2581–2586

    Article  CAS  Google Scholar 

  4. Arroyo-deDompablo ME, Armand M, Tarascon JM, Amador U (2006) On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4 system (M = Fe, Mn Co, Ni). Electrochem Commun 8:1292–1298

    Article  CAS  Google Scholar 

  5. Dominko R, Bele M, Gaberscek M, Meden A, Remskar M, Jamnik J (2006) Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem. Commun 8:217–222

    Article  CAS  Google Scholar 

  6. Aravindan V, Karthikeyan K, Kang KS, Yoon WS, Kim WS, Lee YS (2011) Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes. J Mater Chem 21:2470–2475

    Article  CAS  Google Scholar 

  7. Dominko R (2008) Li2MSiO4 (M = Fe and/or Mn) cathode materials. J Power Sources 184:462–468

    Article  CAS  Google Scholar 

  8. Tang XC, Li LX, Lai QL, Song XW, Jiang LH (2009) Investigation on diffusion behavior of Li+ in LiFePO4 by capacity intermittent titration technique (CITT). Electrochim Acta 54:2329–2334

    Article  CAS  Google Scholar 

  9. Ravet N, Besner S, Simoneau M, Valee A, Armand M (1999) New electrode materials with high surface conductivity. CA 2270771 A1

  10. Huang H, Yin SC, Nazar LF (2011) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett 4:A170–A172

    Article  Google Scholar 

  11. Prosini PP, Zane D, Pasquali M (2011) Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochim Acta 46:3517–3523

    Article  Google Scholar 

  12. Gong ZL, Li YX, He GN, Li J, Yang Y (2008) Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol–gel process. Electrochem Solid State Lett 11:A60–A63

    Article  CAS  Google Scholar 

  13. Aravindan V, Karthikeyan K, Amaresh S, Lee YS (2011) Superior lithium storage properties of carbon coated Li2MnSiO4 cathodes. Electrochem Solid-State Lett 14:A33–A35

    Article  CAS  Google Scholar 

  14. Lv DP, Wen W, Huang XK, Bai JY, Mi JX, Wu SQ, Yang Y (2011) A novel Li2FeSiO4/C composite: synthesis, characterization and high storage capacity. J Mater Chem 21:9506–9512

    Article  CAS  Google Scholar 

  15. Dominko R, Bele M, Kokalj A, Gaberscek M, Jamnik J (2010) Li2MnSiO4 as a potential Li-battery cathode material. J Power Sources 174:457–461

    Article  Google Scholar 

  16. Deng C, Zhang S, Fu BL, Yang SY, Ma L (2010) Characterization of Li2MnSiO4 and Li2FeSiO4 cathode materials synthesized via a citric acid assisted sol–gel method. Mater Chem Phys 120:14–17

    Article  CAS  Google Scholar 

  17. Zhang S, Deng C, Liu FL, Wu Q, Zhang M, Meng FL, Gao H (2013) Impacts of in situ carbon coating on the structural, morphological and electrochemical characteristics of Li2MnSiO4 prepared by a citric acid assisted sol–gel method. J Electroanal Chem 689:88–95

    Article  CAS  Google Scholar 

  18. Arroyo-deDompablo ME, Amador U, Gallardo-Amores JM, Morán E, Ehrenberg H, Dupont L, Dominko R (2009) Polymorphs of Li3PO4 and Li2MSiO4 (M = Mn, Co): the role of pressure. J Power Sources 189:638–642

    Article  Google Scholar 

  19. Gummow RJ, Sharma N, Peterson VK, He Y (2012) Crystal chemistry of the Pmnb polymorph of Li2MnSiO4. J Solid State Chem 188:32–37

    Article  CAS  Google Scholar 

  20. Politaev VV, Petrenko AA, Nalbandyan VB, Medvedev BS, Shvetsova ES (2007) Crystal structure, phase relations and electrochemical properties of monoclinic Li2MnSiO4. J Solid State Chem 180:1045–1050

    Article  CAS  Google Scholar 

  21. Belharouak I, Abouimrane A, Amine K (2009) Structural and electrochemical characterization of Li2MnSiO4 cathode material. J Phys Chem C 113:20733–20737

    Article  CAS  Google Scholar 

  22. Kokalj A, Dominko R, Mali G, Meden A, Gaberscek A, Jamnik J (2007) Beyond one-electron reaction in Li cathode materials: designing Li2MnxFe1-xSiO4. Chem Mater 19:3633–3640

    Article  CAS  Google Scholar 

  23. Liu W, Xu Y, Yang R (2009) Synthesis, characterization and electrochemical performance of Li2MnSiO4/C cathode material by solid-state reaction. J Alloy Compd 480:L1–L4

    Article  CAS  Google Scholar 

  24. Arroyo-deDompablo ME, Dominko R, Amores JMG, Dupont L, Mali G, Ehrenberg H, Jamnik J, Moran E (2008) On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs. Chem Mater 20:5574–5584

    Article  CAS  Google Scholar 

  25. Li YX, Gong ZL, Yang Y (2007) Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J Power Sources 174:528–532

    Article  CAS  Google Scholar 

  26. Muraliganth T, Stroukoff KR, Manthiram A (2010) On the energetic stability and electrochemistry of Li2MnSiO-4 polymorphs. Chem Mater 22:5754–5761

    Article  CAS  Google Scholar 

  27. Wyrzykowski D, Hebanowska E, Nowak-Wiczk G, Makowski M, Chmurzynski L (2011) Thermal behaviour of citric acid and isomeric aconitic acids. J Therm Anal Calorim 104:731–735

    Article  CAS  Google Scholar 

  28. Bhuvaneswari MS, Bramnik NN, Ensling D, Ehrenberg H, Jaegermann W (2008) Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries. J Power Sources 180:553–560

    Article  CAS  Google Scholar 

  29. Nagpure SC, Bhushan B, Babu SS (2012) Raman and NMR studies of aged LiFePO4 cathode. Appl Surf Sci 259:49–54

    Article  CAS  Google Scholar 

  30. Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) Optimization of carbon coatings on LiFePO4. J Power Sources 163:180–184

    Article  CAS  Google Scholar 

  31. Zaghib K, Ait Salah A, Ravet N, Mauger A, Gendron F, Julien CM (2006) Structural, magnetic and electrochemical properties of lithium iron orthosilicate. J Power Sources 160:1381–1386

    Article  CAS  Google Scholar 

  32. Oh SW, Myung ST, Oh SM, Oh KH, Amine K, Scrosati B, Sun YK (2010) Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv Mater 22:4842–4845

    Article  CAS  Google Scholar 

  33. Deng C, Sun YH, Zhang S, Lin HM, Gao Y, Wu B, Ma L, Shang Y, Dong G (2012) Synthesis and improved properties of nanostructured Li2MnSiO4/C via a modified sol–gel method. Int J Electrochem Sci 7:4559–4566

    CAS  Google Scholar 

  34. Zhang S, Deng C, Gao H, Meng FL, Zhang M (2013) Li2+xMn1−xPxSi1−xO4/C as novel cathode materials for lithium ion batteries. Electrochim Acta 107:406–412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the R&D Program through the National Fusion Research Institute of Korea (NFRI) funded by the government funds, and by the Degree & Research Center Program of the Korea Research Council of Fundamental Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joongpyo Shim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, S., Lee, KK., Park, G. et al. Physical and electrochemical characteristics of carbon content in carbon-coated Li2MnSiO4 for rechargeable lithium batteries. J Appl Electrochem 45, 169–176 (2015). https://doi.org/10.1007/s10800-014-0778-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0778-8

Keywords

Navigation