Skip to main content
Log in

Ni nanoparticles-graphene hybrid film: one-step electrodeposition preparation and application as highly efficient oxygen evolution reaction electrocatalyst

  • Short Communication
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this communication, we demonstrate the preparation of Ni nanoparticles-graphene hybrid film via simultaneous electrochemical reduction of graphene oxide and Ni2+ on conductive substrate for the first time. We further show the utilization of such hybrid film as an efficient oxygen evolution reaction electrocatalyst with highly catalytic activity and good durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  2. Zhong DK, Gamelin DR (2010) Photoelectrochemical water oxidation by cobalt catalyst (“Co-Pi”)/alpha-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132:4202–4207

    Article  CAS  Google Scholar 

  3. Hurst JK (2010) In pursuit of water oxidation catalysts for solar fuel production. Science 328:315–316

    Article  CAS  Google Scholar 

  4. Liu X, Wang F (2012) Transition metal complexes that catalyze oxygen formation from water: 1979–2010. Coord Chem Rev 256:1115–1136

    Article  CAS  Google Scholar 

  5. Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898

    Article  CAS  Google Scholar 

  6. Fang Y, Liu Z (2010) Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2 (110). J Am Chem Soc 132:18214–18222

    Article  CAS  Google Scholar 

  7. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Article  CAS  Google Scholar 

  8. Najafpour MM, Ehrenberg T, Wiechen M, Kurz P (2010) Calcium manganese (III) oxides (CaMn2O4·xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Ed 49:2233–2237

    Article  CAS  Google Scholar 

  9. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  CAS  Google Scholar 

  10. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    Article  CAS  Google Scholar 

  11. Kent CA, Concepcion JJ, Dares CJ, Torelli DA, Rieth AJ, Miller AS, Hoertz PG, Meyer TJ (2013) Water oxidation and oxygen monitoring by cobalt-modified fluorine-doped tin oxide electrodes. J Am Chem Soc 135:8432–8435

    Article  CAS  Google Scholar 

  12. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550–557

    Article  CAS  Google Scholar 

  13. Singh A, Chang SLY, Hocking RK, Bach U, Spiccia L (2013) Highly active nickel oxide water oxidation catalysts deposited from molecular complexes. Energy Environ Sci 6:579–586

    Article  CAS  Google Scholar 

  14. Chen S, Duan J, Ran J, Jaroniec M, Qiao S (2013) N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy Environ Sci 6:3693–3699

    Article  CAS  Google Scholar 

  15. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  16. Gao J, Liu F, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218

    Article  CAS  Google Scholar 

  17. Li Z, Yao Y, Lin Z, Moon K-S, Lin W, Wong C (2010) Ultrafast, dry microwave synthesis of graphene sheets. J Mater Chem 20:4781–4783

    Article  CAS  Google Scholar 

  18. Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectro electrochemical study. J Phys Chem C 113:7985–7989

    Article  CAS  Google Scholar 

  19. Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 35:133–137

    Article  Google Scholar 

  20. Ye W, Zhang X, Chen Y, Du Y, Zhou F, Wang C (2013) Pulsed electrodeposition of reduced graphene oxide on glass garbon electrode as an effective support of electrodeposited Pt microspherical particles: nucleation studies and the application for methanol electro-oxidation. Int J Electrochem Sci 8:2122–2139

    CAS  Google Scholar 

  21. Chen S, Qiao S (2013) Hierarchically porous nitrogen-doped graphene NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano 7:10190–10196

    Article  CAS  Google Scholar 

  22. Wang J, Zhong H, Qin Y, Zhang X (2013) An efficient three-dimensional oxygen evolution electrode. Angew Chem Int Ed 52:5248–5253

    Article  CAS  Google Scholar 

  23. Trasatti S (ed) (1981) Electrodes of conductive metallic oxides. Elsevier, New York

    Google Scholar 

  24. Zhou W, Wu X, Cao X, Huang X, Tan C, Liu H, Wang J, Zhang H (2013) Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ Sci 6:2921–2924

    Article  CAS  Google Scholar 

  25. Godwin I, Lyons M (2013) Enhanced oxygen evolution at hydrous nickel oxide electrodes via electrochemical ageing in alkaline solution. Electrochem Commun 32:39–42

    Article  CAS  Google Scholar 

  26. Yeo B, Bell A (2012) In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C 116:8394–8400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuping Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Z., Liu, Q., Asiri, A.M. et al. Ni nanoparticles-graphene hybrid film: one-step electrodeposition preparation and application as highly efficient oxygen evolution reaction electrocatalyst. J Appl Electrochem 44, 1165–1170 (2014). https://doi.org/10.1007/s10800-014-0743-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0743-6

Keywords

Navigation