Skip to main content
Log in

Investigation of multilayered quantum dot-sensitized solar cells with different Zn chalcogenide passivation layers

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In the case of cadmium sulfide (CdS) and cadmium selenide (CdSe)-based quantum dot-sensitized solar cells (QDSSCs), the addition of a zinc sulfide (ZnS) passivation layer improves the solar cell performance. In this study, multilayered QDSSCs were fabricated using CdS and CdSe quantum dots prepared by successive ionic layer adsorption and reaction (SILAR) method. The optimized QDSSCs were used to study the passivation effect of zinc chalcogenide layers: ZnS, zinc selenide (ZnSe), and zinc telluride (ZnTe). The best performing solar cell prepared from four SILAR cycles of CdS followed by six SILAR cycles of CdSe were used for subsequent deposition of Zn chalcogenide layers. It was observed that capping with ZnSe or ZnTe layer on the multilayered Cd chalcogenide QDs did not improve the solar cell performance. Only the addition of ZnS layer contributed to the better performance of the solar cell. The efficiency obtained in the optimized multilayered CdS/CdSe QDSSC with ZnS layer was 1.37 %, while the QDSSC with ZnSe or ZnTe capping showed lower performance. The behavior of the solar cells is explained with electrochemical impedance spectroscopy study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jun HK, Careem MA, Arof AK (2013) Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew Sustain Energy Rev 22:148–167

    Article  CAS  Google Scholar 

  2. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:8735–18753

    Article  Google Scholar 

  3. Ruhle S, Shalom M, Zaban A (2010) Quantum-dot-sensitized solar cells. ChemPhysChem 11:2290–2304

    Article  Google Scholar 

  4. Chang C-H, Lee Y-L (2007) Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dots-sensitized solar cells. Appl Phys Lett 91:053503

    Article  Google Scholar 

  5. Diguna LJ, Shen Q, Kobayashi J, Toyoda T (2007) High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl Phys Lett 91:023116

    Article  Google Scholar 

  6. Tubtimtae A, Wu K-L, Tung H-Y, Lee M-W, Wang GJ (2010) Ag2S quantum dot-sensitized solar cells. Electrochem Commun 12:1158–1160

    Article  CAS  Google Scholar 

  7. Feng J, Han J, Zhao X (2009) Synthesis of CuInS2 quantum dots on TiO2 porous films by solvothermal method for absorption layer of solar cells. Prog Org Coat 64:268–273

    Article  CAS  Google Scholar 

  8. Plass R, Pelet S, Krueger J, Gratzel M, Bach U (2002) Quantum dot sensitization of organic–inorganic hybrid solar cells. J Phys Chem B 106:7578–7580

    CAS  Google Scholar 

  9. Park N-G (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett 4:2423–2429

    CAS  Google Scholar 

  10. Ruhle S, Yahav S, Greenwald S, Zaban A (2012) Importance of recombination at the TCO/electrolyte interface for high efficiency quantum dot sensitized solar cells. J Phys Chem C 116:17473–17478

    Article  CAS  Google Scholar 

  11. Tachan Z, Hod I, Shalom M, Grinis L, Zaban A (2013) The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells. Phys Chem Chem Phys 15:3841–3845

    Article  CAS  Google Scholar 

  12. Shen Q, Kobayashi J, Diguna LJ, Toyoda T (2008) Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J Appl Phys 103:084304

    Article  Google Scholar 

  13. de la Fuente MS, Sanchez RS, Gonzalez-Pedro V, Boix PP, Mhaisalkar SG, Rincon ME, Bisquert J, Mora-Sero I (2013) Effect of organic and inorganic passivation in quantum-dot-sensitized solar cells. J Phys Chem Lett 4:1519–1525

    Google Scholar 

  14. Tachibana Y, Umekita K, Otsuka Y, Kuwabata S (2008) Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer. J Phys D Appl Phys 41:102002

    Article  Google Scholar 

  15. Lee HJ, Wang M, Chen P, Gamelin DR, Zakeeruddin SM, Gratzel M, Nazeeruddin MK (2009) Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett 9:4221–4227

    Article  CAS  Google Scholar 

  16. Jun HK, Careem MA, Arof AK (2013) A suitable electrolyte for CdSe quantum dot-sensitized solar cells. Int J Photoenergy 2013:942139

    Article  Google Scholar 

  17. Toyoda T, Sato J, Shen Q (2003) Effect of sensitization by quantum-sized CdS on photoacoustic and photoelectrochemical current spectra of porous TiO2 electrodes. Rev Sci Instrum 74:297–299

    Article  CAS  Google Scholar 

  18. Barcelo I, Lana-Villarreal T, Gomez R (2011) Efficient sensitization of ZnO nanoporous films with CdSe grown by successive ionic layer adsorption and reaction (SILAR). J Photochem Photobiol A Chem 220:47–53

    Article  CAS  Google Scholar 

  19. Wang X, Koleilat GI, Tang J, Liu H, Kramer IJ, Debnath R, Brzozowski L, Barkhouse DAR, Levina L, Hoogland S, Sargent EH (2011) Tandem colloidal quantum dot solar cells employing graded recombination layer. Nat Photonics 5:480–484

    Article  CAS  Google Scholar 

  20. Gratzel M (2001) Photoelectrochemical cells. Nature 414(2001):338–344

    Article  CAS  Google Scholar 

  21. Bang JH, Kamat PV (2009) Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3:1467–1476

    Article  CAS  Google Scholar 

  22. Jun HK, Careem MA, Arof AK (2014) Fabrication, characterization, and optimization of CdS and CdSe quantum dot-sensitized solar cells with quantum dots prepared by successive ionic layer adsorption and reaction. Int J Photoenergy 2014:939423

    Article  Google Scholar 

  23. Seo M-H, Hwang W-P, Kim Y-K, Lee J-K, Kim M-R (2011) Improvement of quantum dot-sensitized solar cells based on Cds and CdSe quantum dots. In: 37th IEEE photovoltaic specialists conference (PVSC), pp 002652–002655

  24. Zhang Y, Zhu J, Yu X, Wei J, Hu L, Dai S (2012) The optical and electrochemical properties of CdS/CdSe co-sensitized TiO2 solar cells prepared by successive ionic layer adsorption and reaction processes. Sol Energy 86:964–971

    Article  CAS  Google Scholar 

  25. Lee HJ, Bang J, Park J, Kim S, Park S-M (2010) Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: all prepared by successive ionic layer adsorption and reaction processes. Chem Mater 22:5636–5643

    Article  CAS  Google Scholar 

  26. Tian J, Gao R, Zhang Q, Zhang S, Li Y, Lan J, Qu X, Cao G (2012) Enhanced performance of CdS/CdSe quantum dot cosensitized solar cells via homogeneous distribution of quantum dots in TiO2 film. J Phys Chem C 116:18655–18662

    Article  CAS  Google Scholar 

  27. Li Z-X, Xie Y-L, Xu H, Wang T-M, Xu Z-G, Zhang H-L (2011) Expanding the photoresponse range of TiO2 nanotube arrays by CdS/CdSe/ZnS quantum dots co-modification. J Photochem Photobiol A Chem 224:25–30

    Article  CAS  Google Scholar 

  28. Chen J, Wu J, Lei W, Song JL, Deng WQ, Sun XW (2010) Co-sensitized quantum dot solar cell based on ZnO nanowire. Appl Surf Sci 256:7438–7441

    CAS  Google Scholar 

  29. Hossain MA, Jennings JR, Shen C, Pan JH, Koh ZY, Matthews N, Wang Q (2012) CdSe-sensitized mesoscopic TiO2 solar cells exhibiting >5% efficiency: redundancy of CdS buffer layer. J Mater Chem 22:16235–16242

    Article  CAS  Google Scholar 

  30. Fang S-Q, Kim D, Kim J–J, Jung DW, Kang SO, Ko J (2009) Highly efficient CdSe quantum-dot-sensitized TiO2 photoelectrodes for solar cells applications. Electrochem Commun 11:1337–1339

    Article  Google Scholar 

  31. Yu X-Y, Lei B-X, Kuang D-B, Su C-Y (2012) High performance and reduced charge recombination of CdSe/CdS quantum dot-sensitized solar cells. J Mater Chem 22:12058

    Article  CAS  Google Scholar 

  32. Gonzalez-Pedro V, Xu X, Mora-Sero I, Bisquert J (2010) Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4:5783–5790

    Article  CAS  Google Scholar 

  33. Wang Q, Moser J-E, Gratzel M (2005) Electrochemical impedance spectroscopy analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953

    CAS  Google Scholar 

  34. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A (2005) Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol Energ Mater Sol C 87:117–131

    Article  CAS  Google Scholar 

  35. Meng K, Surolia PK, Byrne O, Thampi KR (2014) Efficient CdS quantum dot sensitized solar cells made using novel Cu2S counter electrode. J Power Sources 248:218–223

    Article  CAS  Google Scholar 

  36. Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Zaban A, Salvador P (2002) Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods. J Phys Chem B 106:334–339

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Malaya for the grants PV094-2012A and RP003-13AFR. H.K. Jun thanks University of Malaya for the Fellowship Scheme Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Arof.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, H.K., Careem, M.A. & Arof, A.K. Investigation of multilayered quantum dot-sensitized solar cells with different Zn chalcogenide passivation layers. J Appl Electrochem 44, 977–988 (2014). https://doi.org/10.1007/s10800-014-0700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0700-4

Keywords

Navigation