Skip to main content

Advertisement

Log in

Mitigation of herbicide runoff as an ecosystem service from a constructed surface flow wetland

  • WETLANDS BIODIVERSITY AND PROCESSES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Ecosystem services provided by wetland systems presently play a pivotal role in intensive cropland as water purification from agricultural pollution. A field trial was conducted in 2014 to evaluate herbicide runoff reduction and retention using a 0.32 ha constructed surface flow wetland (CSFW) at the outlet of a 6 ha agricultural basin. To simulate an extreme pulse contamination, the CSFW was flooded with a runoff contaminated with metolachlor, and terbuthylazine and two other subsequent floods with pure water were applied 21 and 65 days later. Results show that the CSFW can reduce runoff concentration of metolachlor and terbuthylazine by a factor of 45–80 even in extreme flooding conditions. Herbicides retention in the CSFW was reversible, and the second and third floods mobilized 14–31 and 3.5–7.0% respectively, of the amount detected in the first flood. The CSFW performs a high buffer capacity for herbicides, capable to provide water purification service, protecting downstream surface water. Moreover, mitigation capacity of a CSFW for a heavy runoff from a 10 ha basin is 90% for every 50 m in length of a 15 m wide wetland. This confirms that the implementation of CSFWs in agro-systems can improve the sustainability of agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, B. S., B. M. Phillips, J. W. Hunt, B. Largay, R. Shihadeh & R. S. Tjeerdema, 2011. Pesticide and toxicity reduction using an integrated vegetated treatment system. Environmental Toxicology and Chemistry 30: 1036–1043.

    Article  CAS  PubMed  Google Scholar 

  • Berghahn, R., S. Mohr, V. Hübner, R. Schmiediche, I. Schmiedling, E. Svetich-Will & R. Schmidt, 2012. Effects of repeated insecticide pulses on macroinvertebrate drift in indoor stream mesocosms. Aquatic Toxicology 122–123: 56–66.

    Article  PubMed  Google Scholar 

  • Bjergager, M.-B. A., M. L. Hanson, L. Lissemore, N. Henriquez, K. R. Solomon & N. Cedergreen, 2011. Synergy in microcosms with environmentally realistic concentrations of prochloraz and esfenvalerate. Aquatic Toxicology 101: 412–422.

    Article  CAS  PubMed  Google Scholar 

  • Borin, M. & D. Tocchetto, 2007. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural waters. Science of the Total Environment 380: 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Brinson, M. M. & D. S. Eckles, 2011. U.S. Department of Agriculture conservation program and practice effects on wetland ecosystem services: a synthesis. Ecological Applications 21: S116–S127.

    Article  Google Scholar 

  • Cardinali, A., S. Otto & G. Zanin, 2013. Herbicides runoff in vegetative filter strips: evaluation and validation of a recent rainfall return period model. International Journal of Environmental and Analytical Chemistry 1: 1–10.

    Google Scholar 

  • Dabrowski, M., S. K. C. Peall, A. J. Reinecke, M. Liess & R. Schulz, 2002. Runoff-related pesticide input into the Lourens River, South Africa: basic data for exposure assessment and risk mitigation at the catchment scale. Water, Air, Soil Pollution 135: 265–283.

    Article  CAS  Google Scholar 

  • Daily, G. C. & A. Matson, 2008. Ecosystem services: from theory to implementation. PNAS 105: 9455–9456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Groot, R., M. Stuip, M. Finlayson & N. Davidson, 2006. Wetlands: guidance for valuing the benefits derived from wetland ecosystem services. Ramsar Technical Report No. 3 CBD Technical Series 27. Gland.

  • Di Guardo, A., D. Calamari, G. Zanin, A. Consalter & D. Mackay, 1994. A fugacity model of pesticide runoff to surface water: development and validation. Chemosphere 28: 511–531.

    Article  Google Scholar 

  • Dyson, J. S., S. Beulke, C. D. Brown & M. C. G. Lane, 2002. Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications. Organic compounds in the environment. Journal of Environmental Quality 31: 613–618.

    Article  CAS  PubMed  Google Scholar 

  • Durel, L., A. Estrada-Peña, M. Franc, H. Mehlhorn & J. Bouyer, 2015. Integrated fly management in European ruminant operations from the perspective of directive 2009/128/EC on sustainable use of pesticide. Parasitology Research 114: 379–389.

    Article  PubMed  Google Scholar 

  • Freitas, L. G., C. W. Götz, M. Ruff, H. P. Singer & S. R. Müller, 2004. Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1028: 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Gregoire, C., D. Elsaesser, D. Huguenot, J. Lange, T. Lebeau, A. Merli, R. Mose, E. Passeport, S. Payraudeau, T. Schütz, R. Schulz, G. Tapia-Padilla, J. Tournebize, M. Trevisan & A. Wanko, 2008. Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environmental Chemistry Letters 7: 205–231.

    Article  Google Scholar 

  • Hinman, M. L. & S. J. Klaine, 1992. Uptake and translocation of selected organic pesticides by rooted aquatic plant Hydrilla verticillata Royle. Environmental Science & Technology 26: 609–613.

    Article  CAS  Google Scholar 

  • Kay, P., A. C. Edwards & M. Foulger, 2009. A review of the efficacy of contemporary agricultural stewardship measures for ameliorating water pollution problems of key concern to the UK water industry. Agricultural Systems 99: 67–75.

    Article  Google Scholar 

  • Lazzaro, L., S. Otto & G. Zanin, 2008. Role of hedgerows in intercepting spray drift: evaluation and modelling of the effects. Agriculture Ecosystems and Environment 123: 317–327.

    Article  Google Scholar 

  • Locke, M. A., M. A. Weaver, R. M. Zablotowicz, R. W. Steinriede, C. T. Bryson & R. F. Cullum, 2011. Constructed wetlands as a component of the agricultural landscape: mitigation of herbicides in simulated runoff from upland drainage areas. Chemosphere 83: 1532–8.

  • MacBean, C., 2012. The Pesticide Manual, Sixteenth ed. British Crop Protection Council Publication, Alton.

    Google Scholar 

  • Mackay, D., W. Y. Shiu & K. C. Ma, 1997. Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. In Pesticide Chemicals, Vol. V. Lewis Publisher, Boca Raton.

  • Maes, J., B. Egoh, L. Willemen, C. Liquete, P. Vihervaara, J. P. Schagner, B. Grizzetti, E. G. Drakou, A. La Notte, G. Zulian, F. Bouraoui, M. L. Parachini, L. Braat & G. Bidoglio, 2012. Mapping ecosystem services for policy support and decision making in the European Union. Ecosystem Services 1: 31–39.

    Article  Google Scholar 

  • Maillard, E. S., E. Payraudeau, C. Faivre, S. Gangloff Gregoire & G. Imfeld, 2011. Removal of pesticide mixtures in a storm water wetland collecting runoff from a vineyard catchment. Science of Total Environment 409: 2317–2324.

    Article  CAS  Google Scholar 

  • Maucieri, M., M. Salvato, J. Tamiazzo & M. Borin, 2014. Biomass production and soil organic carbon accumulation in a free water surface constructed wetland treating agricultural wastewater in North Eastern Italy. Ecological Engineering 70: 422–428.

    Article  Google Scholar 

  • MEA, Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-Being: Wetlands and Water. Island Press, Washington, DC.

    Google Scholar 

  • Otto, S., L. Riello, R.-A. Düring, H. E. Hummel & G. Zanin, 1997. Herbicide dissipation and dynamics modelling in three different tillage systems. Chemosphere 4: 163–178.

    Article  Google Scholar 

  • Otto, S., A. Cardinali, E. Marotta, C. Paradisi & G. Zanin, 2012. Effect of vegetative filter strips on herbicide runoff under various types of rainfall. Chemosphere 88: 113–119.

    Article  CAS  PubMed  Google Scholar 

  • Power, A. J., 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society, Biological Sciences 365: 2959–2971.

    Article  Google Scholar 

  • Reichenberger, S., M. Bach, A. Skitschak & H. G. Frede, 2007. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; A review. Science of the Total Environment 384: 1–35.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings, J. O., S. G. Pantula & D. A. Dickey, 1998. Applied regression analysis: a research tool, 2nd ed. Springer, New York.

    Book  Google Scholar 

  • StatSoft Inc., 2011. Statistica (data analysis software system), version 10. http://www.statsoft.com StatSoft, Inc. Tulsa.

  • Stehle, S., D. Elsaesser, C. Gregoire, G. Imfeld, E. Niehaus, E. Passeport, S. Payraudeau, R. B. Schäfer, J. Tournebize & R. Schulz, 2011. Pesticide risk mitigation by vegetated treatment systems: a meta-analysis. Journal of Environmental Quality 40: 1068–1080.

    Article  CAS  PubMed  Google Scholar 

  • Tanner, C. C., C. Howard-Williams, M. D. Tomer & R. Lowrance, 2013. Bringing together science and policy to protect and enhance wetland ecosystem services in agricultural landscapes. Ecological Engineering 56: 1–4.

    Article  Google Scholar 

  • Tomlin, C. D. S., 2006. The Pesticide Manual, 14th ed. British Crop Protection Council Publications, Alton.

    Google Scholar 

  • Tournebize, J., E. Passeport, C. Chaumont, C. Fesneau, A. Guenne & B. Vincent, 2013. Pesticide de-contamination of surface waters as a wetland ecosystem service in agricultural landscapes. Ecological Engineering 56: 51–59.

    Article  Google Scholar 

  • Vianello, M., C. Vischetti, L. Scarponi & G. Zanin, 2005. Herbicide losses in runoff events from a field with a low slope: role of a vegetative filter strip. Chemosphere 61: 717–725.

    Article  CAS  PubMed  Google Scholar 

  • Vymazal, J. & T. Brezinovà, 2015. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environment International 75: 11–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was carried out with financial support of GRIMiCID project 2013–2015, within the Plan for the Rural Development (Piano per lo Sviluppo Rurale, PSR Misura 124) of the Veneto Region. The authors would like to thank Dr A. Cardinali for her help in the lab part of this work and Dr. Francesco Ferrarese for the Digital Elevation Model of the Veneto Region (Fig. 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Pappalardo.

Ethics declarations

Conflict of interest

There is no potential conflicts of interest.

Human animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Guest editors: Pierluigi Viaroli, Marco Bartoli & Jan Vymazal / Wetlands Biodiversity and Processes: Tools for Management and Conservation

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappalardo, S.E., Otto, S., Gasparini, V. et al. Mitigation of herbicide runoff as an ecosystem service from a constructed surface flow wetland. Hydrobiologia 774, 193–202 (2016). https://doi.org/10.1007/s10750-015-2375-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2375-1

Keywords

Navigation