Skip to main content
Log in

Modelling and forecasting the heterogeneous distribution of picocyanobacteria in the tropical Lajes Reservoir (Brazil) by evolutionary computation

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Five years of water quality data from six stations across the mesotrophic and oligomictic Lajes Reservoir (Brazil) were utilized to develop 7-day ahead forecasting models for the picocyanobacteria Cyanodictyon imperfectum, Cyanogranis ferruginea and Synechococcus sp. by means of the hybrid evolutionary algorithm HEA. The data included physical and chemical water quality parameters as well as abundance data of the three picocyanobacteria. Models based on site-specific data of six monitoring stations forecasted population dynamics of Synechococcus with coefficients of determination (r 2) between 0.58 for and 0.88, of Cyanodictyon with r 2 between 0.5 and 0.89 and of Cyanogranis with r 2 between 0.53 and 0.77. Despite phosphorus limiting conditions the sensitivity analysis revealed that the three picocyanobacteria responded much stronger to nitrate rather than to phosphate concentrations throughout the Lajes Reservoir suggesting that cyanobacteria may have adopted the sulphur-for-phosphorus strategy by utilizing sulfolipids instead. Cyanogranis displayed a negative relationship with increasing water temperature indicating its higher competitiveness at internal nutrient supply and low light levels during winter turnover. The resulting models will inform operational intervention and prevention of fast growth and dispersal of picocyanobacteria in Lajes Reservoir, and reveal environmental thresholds for outbreaks of such events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Borics, G., A. Abonyi, E. Krasznai, G. Várbíró, I. Grigorszky, S. Szabó, C. Deák & B. Tóthmeresz, 2011. Small-scale patchiness of the phytoplankton in a lentic oxbow. Journal of Plankton Research 33(6): 973–981.

    Article  Google Scholar 

  • Brasil, 2011. Potable Water Ordinance No. 2.914 of the Brazilian Ministry of Health. Procedures for control and monitoring water quality for human consumption and potability standards (In Portuguese).

  • Bláha, L. & B. Marsálek, 1999. Microcystin production and toxicity of picocyanobacteria as a risk for drinking water treatment plants. Algological Studies 92: 95–108.

    Google Scholar 

  • Branco, C. W. C., B. Kozlowsky-Suzuki, I. Sousa-Filho, A. W. S. Guarinol & R. J. Rocha, 2009. Impact of climate on the vertical water column structure of Lajes Reservoir (Brazil): a tropical reservoir case. Lakes & Reservoirs: Research and Management 14: 175–191.

    Article  CAS  Google Scholar 

  • Callieri, C., 2007. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrops. Freshwater Reviews 1: 1–28.

    Article  Google Scholar 

  • Callieri, C. & J. Stockner, 2000. Picocyanobacteria success in oligotrophic lakes: fact of fiction? Journal of Limnology 59(1): 72–76.

    Article  Google Scholar 

  • Callieri, C. & J. Stockner, 2002. Freshwater autotrophic picoplankton: a review. Journal of Limnology 61(1): 1–14.

    Article  Google Scholar 

  • Callieri, C., G. Cronberg & J. G. Stockner, 2012. Freshwater picocyanobacteria: single cells, microcolonies and colonial forms. In Whitton, B. H. & M. Potts (eds), Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer Academic Publishers, Norwell, MA: 229–270.

    Google Scholar 

  • Camacho, A., M. R. Miracle & E. Vicente, 2003. Which factors determine the abundance and distribution of picocyanobacteria in inland waters? A comparison among different types of lakes and ponds. Archives of Hydrobiology 157(3): 321–338.

    Article  Google Scholar 

  • Cao, H., F. Recknagel & P. Orr, 2013. Enhanced functionality of the redesigned hybrid evolutionary algorithm HEA demonstrated by predictive modelling of algal growth in the Wivenhoe Reservoir, Queensland (Australia). Ecological Modelling 252: 32–43.

    Article  Google Scholar 

  • Chan, W. S., F. Recknagel, H. Cao & H.-D. Park, 2007. Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms. Water Research 41: 2247–2255.

    Article  CAS  PubMed  Google Scholar 

  • Delazari-Barroso, A., G. F. Barroso, W. L. M. Huszar & S. M. F. O. Azevedo, 2009. Physical regimes and nutrient limitation affecting phytoplankton growth in a meso-eutrophic water supply reservoir in southeast Brazil. Lakes & Reservoirs: Research and Management 14: 269–278.

    Article  CAS  Google Scholar 

  • Furtado, A. L. F. F., M. D. C. Calijuri, A. S. Lorenzi, R. Y. Honda, D. B. Genuario & M. F. Fiore, 2009. Morphological and molecular characterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystis production. Hydrobiologia 627: 195–209.

    Article  CAS  Google Scholar 

  • Gentil, R. C., A. Tuci & C. L. Sant’Anna, 2008. Dinâmica da comunidade fitoplanctônica e aspectos sanitários de um lago urbano eutrófico em São Paulo, SP. Hoehnea 35(2): 265–280.

    Article  Google Scholar 

  • Guarino, A. S., C. W. C. Branco, G. P. Diniz & R. Rocha, 2005. Limnological Studies in an Old Tropical Reservoir (Lajes Reservoir, RJ, Brazil). Acta Limnologica Brasiliensia 17: 129–141.

    Google Scholar 

  • Hickel, J. B. & U. Pollingher, 1988. Mass development of an iron precipitating cyanophyte (Cyanodiction imperfectum) in a subtropical lake (Lake Kinneret, Israel). Phycologia 27: 291–297.

    Article  Google Scholar 

  • Hindák, F., 1982. On some planktonic coccoid blue-green algae characteristic by Fe-precipitates. Archives of Hydrobiology Suppl 63(3); Algological Studies 32:241–258.

  • Honda, R. Y. & M. T. P. Azevedo, 2004. Estudos taxonômicos em culturas de Cyanobacteria provenientes de um reservatório oligotrófico no Parque Estadual das Fontes do Ipiranga, São Paulo, SP, Brasil. Hoehnea 31(2): 151–169.

    Google Scholar 

  • Kim, D.-K., H. Cao, K.-S. Jeong, F. Recknagel & G.-J. Joo, 2007. Predictive function and rules for population dynamics of Microcystis aeruginosa in the regulated Nakdong River (South Korea), discovered by evolutionary algorithms. Ecological Modelling 20(3): 147–156.

    Article  Google Scholar 

  • Lund, J. W. H., C. Kipling & E. D. Lecren, 1958. The inverted microscope method of estimating algal number and statistical basis of estimating by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Macek, M., M. Alcocer, A. Lugo Vásquez, M. E. Martínez-Pérez, L. Peralta Soriano & G. V. Fatjó, 2009. Long term picoplankton dynamics in a warm-monomitic, tropical high altitude lake. Journal of Limnology 68(2): 183–192.

    Article  Google Scholar 

  • Moutin, T., T. R. Thingstad, F. Van Wambeke, D. Marie, G. Slawyk, P. Raimbault & H. Claustre, 2002. Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus? Limnology and Oceanography 47:1562–1567.

  • Padisák, J., L. Kreinitz, R. Koschel & J. Nedoma, 1997. Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development an erosion. European Journal of Phycology 32: 403–416.

    Article  Google Scholar 

  • Recknagel, F., H. Cao, C. van Ginkel, D. van der Molen, H. Park & N. Takamura, 2008. Adaptive agents for forecasting seasonal outbreaks of blue-green algal populations in lakes categorised by circulation type and trophic state. Verhandlungen des Internationalen Verein Limnologie 30(2): 191–197.

    Google Scholar 

  • Recknagel, F., I. Ostrovsky, H. Cao, T. Zohary & X. Zhang, 2013. Ecological relationships, thresholds and time-lags determining phytoplankton community dynamics of Lake Kinneret, Israel elucidated by evolutionary computation and wavelets. Ecological Modelling 255: 70–86.

    Article  CAS  Google Scholar 

  • Recknagel, F., P. Orr & H. Cao, 2014a. Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation. Harmful Algae 31: 26–34.

    Article  CAS  Google Scholar 

  • Recknagel, F., I. Ostrovsky, H. Cao & Q. Chen, 2014b. Hybrid evolutionary computation quantifies environmental thresholds for recurrent outbreaks of population density. Ecological Informatics 24: 85–89.

    Article  Google Scholar 

  • Recknagel, F., I. Ostrovsky & H. Cao, 2014c. Model ensemble for the simulation of plankton community dynamics of Lake Kinneret (Israel) induced from in situ predictor variables by evolutionary computation. Environmental Modelling & Software 61: 380–392.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge: 535 pp.

  • Sarmento, H., F. Unrein, M. Isumbisho, S. Stenuite, J. M. Gasol & J. P. Descy, 2008. Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshwater Biology 53: 756–771.

    Article  Google Scholar 

  • Schallenberg, M. & C. W. Burns, 2001. Tests of autotrophic picoplankton as early indicators of nutrient enrichment in an ultra-oligotrophic lake. Freshwater Biology 46: 27–37.

    Article  Google Scholar 

  • Soares, M. C. S., M. G. Sophia & V. L. M. Huszar, 2007. Phytoplankton flora of two rivers in Southeast Brazil—Paraibuna and Pomba Rivers, Minas Gerais. Revista Brasileira de Botânica 30(3): 433–450.

    Google Scholar 

  • Soares, M. C. S., M. M. Marinho, V. L. M. Huszar, C. W. C. Branco & S. M. F. O. Azevedo, 2008. The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes & Reservoirs: Research & Management 13: 257–269.

    Article  Google Scholar 

  • Soares, M. C. S., M. I. A. Rocha, M. M. Marinho, S. M. Azevedo, C. W. C. Branco & V. Huszar, 2009. Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects. Aquatic Microbial Ecology 57: 137–149.

    Article  Google Scholar 

  • Soares, M. C. S., M. M. Marinho, S. M. Azevedo, C. W. C. Branco & V. Huszar, 2012. Eutrophication and retention time affecting spatial heterogeneity in a tropical reservoir. Limnologica (Jena) 42: 197–203.

    Article  CAS  Google Scholar 

  • Stenuite, S., A. L. Tarbe, H. Sarmento, F. Unrein, S. Pirlot, D. Sinyinza, S. Thill, M. Lecomte, B. Leporcq, J. M. Gasol & J. P. Descy, 2009. Photosynthetic picoplankton in Lake Tanganyika: biomass distribution patterns with depth, season and basin. Journal of Plankton Research 31(12): 1531–1544.

    Article  CAS  Google Scholar 

  • Stockner, J., C. Callieri, G. Cronberg, 2000. Picoplankton and other nonbloom forming cyanobacteria in lakes. In Whitton, B. A. & M. Potts (eds), The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht: 195–238.

  • Storn, R. & K. Price, 1997. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11: 341–359.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton-methodik. Mitteilungen Internationale Vereinigung Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vadstein, O., 2000. Heterotrophic planktonic bacteria and cycling of phosphorus: phosphorus requirements, competitive ability, and food web interactions. In: Schink, B (ed), Advances in microbial ecology, vol 16. Kluwer Academic Publisher, New York: 115–167.

  • Van de Bogert, M. C., D. L. Bade, St. R. Carpenter, J. J. Cole, M. L. Pace, P. C. Hanson & O. C. Langman, 2012. Spatial heterogeneity strongly affects estimates of ecosystem metabolism in two north temperate lakes. Limnology and Oceanography 57(6): 1689–1700.

    Article  Google Scholar 

  • Van Mooy, B. A. S., G. Rocap, H. F. Fredericks, C. T. Evans & A. H. Devol, 2006. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proceedings of the Natural Academy of Science 103: 8607–8612.

    Article  Google Scholar 

  • Whitton, B., 1992. Diversity, ecology, and taxonomy of cyanobacteria. In Mann, N. H. & N. G. Carr (eds), Photosynthetic Prokaryotes. Plenum Press, New York: 1–51.

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was funded by the Australian Research Council (ARC-L0990453). The authors thank anonymous reviewers for valuable comments that have significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Recknagel.

Additional information

Handling editor: David Philip Hamilton

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Recknagel, F., Branco, C.W.C., Cao, H. et al. Modelling and forecasting the heterogeneous distribution of picocyanobacteria in the tropical Lajes Reservoir (Brazil) by evolutionary computation. Hydrobiologia 749, 53–67 (2015). https://doi.org/10.1007/s10750-014-2144-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2144-6

Keywords

Navigation