Skip to main content
Log in

Strong dependence between phytoplankton and water chemistry in a large temperate lake: spatial and temporal perspective

  • EUROPEAN LARGE LAKES III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In lakes, spatial and temporal variability of water chemistry and phytoplankton are characteristic phenomena although often difficult to link together. This motivated us to study their interplay in Lake Vanajanselkä, a eutrophic lake in Finland. We hypothesized that in summer spatial and temporal differences in phytoplankton and water chemistry can be extended in comparison to spring and autumn. Therefore, chlorophyll a and water chemistry was examined by six sampling campaigns with 15 sampling sites over the lake in May–October 2009–2010. In summer, chlorophyll, pH, and oxygen were horizontally and vertically unevenly distributed in the lake, and in the epilimnion pH and oxygen showed a distinct diurnal variability suggesting high photosynthesis during the day. Daily >1 pH unit difference between the sites and 2.5 pH unit difference between the epi- and hypolimnion were found. In agreement with pH and oxygen, NO3-N and NH4-N could be unevenly distributed in the epilimnion. In autumn no spatial differences were found, however. The results emphasized that algae and cyanobacteria were responsible, at least partly, for the variability in water chemistry in the surface layer, and short- and long-term gradients in space and time need to be considered when productive lakes are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anttila, S. & T. Kairesalo, 2010. Mean and variance estimations with different pixel sizes: case study in a small water quality monitoring area in southern Finland. Boreal Environment Research 15: 335–346.

    CAS  Google Scholar 

  • Arvola, L., 1984. Diel variation in primary production and the vertical distribution of phytoplankton in a polyhumic lake. Archiv für Hydrobiologie 101: 503–519.

    Google Scholar 

  • Arvola, L., A. Ojala, F. Barbosa & S. I. Heaney, 1991. Migration behaviour of three cryptophytes in relation to environmental gradients: an experimental approach. British Phycological Journal 26: 361–373.

    Article  Google Scholar 

  • Arvola, L., P. Kankaala, T. Tulonen & A. Ojala, 1996. Effects of phosphorus and allochthonous humic matter enrichment on the metabolic processes and community structure of plankton in a boreal lake. Canadian Journal of Fisheries and Aquatic Research 53: 1646–1662.

    Article  Google Scholar 

  • Boehrer, B. & M. Schultze, 2008. Stratification of lakes. Reviews in Geophysics 46: RG2005. doi:10.1029/2006RG000210.

    Article  Google Scholar 

  • Cloern, J. E., A. E. Alpine, B. E. Cole & T. Heller, 1992. Seasonal changes in the spatial distribution of phytoplankton in small, temperate-zone lakes. Journal of Plankton Research 14: 1017–1024.

    Article  Google Scholar 

  • Della Rossa, F., S. Fasani & S. Rinaldi, 2013. Conditions for patchiness in plankton models. Theoretical Population Biology 83: 95–100.

    Article  PubMed  Google Scholar 

  • George, D. G. & R. W. Edwards, 1973. Daphnia distributions within Langmuir circulations. Limnology and Oceanography 18: 798–800.

    Article  Google Scholar 

  • George, D. G. & S. I. Heaney, 1978. Factors influencing the spatial distribution of phytoplankton in a small productive lake. Journal of Ecology 66: 133–155.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology, Vol. III. Introduction to Lake Biology and the Limnoplankton. Wiley, New York.

    Google Scholar 

  • Jokiniemi, A., 2013. Wastewater spreading in inland waters [in Finnish]. M.Sc. Thesis, Department of Physics, University of Helsinki.

  • Kairesalo, T., 1980. Diurnal fluctuations within a littoral plankton community in oligotrophic Lake Pääjärvi, southern Finland. Freshwater Biology 10: 533–553.

    Article  Google Scholar 

  • Kalff, J., 2002. Limnology: Inland Water Ecosystems. Prentice-Hall Inc., Englewood Cliffs, NJ.

    Google Scholar 

  • Kansanen, P., 1981. Effects of heavy pollution on the zoobenthos in Lake Vanajavesi, southern Finland, with special reference to the meiozoobenthos. Annales Zoologici Fennici 18: 243–251.

    Google Scholar 

  • Keskitalo, J. & K. Salonen, 1994. Manual for Integrated Monitoring. Subprogramme Hydrobiology of Lakes. Publications of the Water and Environment Administration: Series B 16, National Board of Waters and the Environment, Helsinki: 41 pp.

  • Leppäranta, M., A. Heini, E. Jaatinen & L. Arvola, 2012. The influence of ice season on the physical and ecological conditions in Lake Vanajanselkä, southern Finland. Water Quality Research Journal of Canada 47: 287–299.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Riley, G. A., 1976. A model of plankton patchiness. Limnology and Oceanography 21: 873–880.

    Article  Google Scholar 

  • Salonen, K. & M. Rosenberg, 2001. Advantages from diel vertical migration can explain the dominance of Gonyostomum semen (Raphidophyceae) in a small, steeply-stratified humic lake. Journal of Plankton Research 22: 1841–1853.

    Article  Google Scholar 

  • Salonen, K., R. I. Jones & L. Arvola, 1984. Hypolimnetic phosphorus retrieval by diel vertical migrations of phytoplankton. Freshwater Biology 14: 431–438.

    Article  CAS  Google Scholar 

  • Schmidt, W., 1928. Über Temperatur und Stabilitätsverhältnisse von Seen. Geografiska Annaler 10: 145–177.

    Article  Google Scholar 

  • Staehr, P. A., J. P. A. Christensen, R. D. Batt & J. S. Read, 2012. Ecosystem metabolism in a stratified lake. Limnology and Oceanography 57: 1317–1330.

    Article  CAS  Google Scholar 

  • Van De Bogert, M. C., D. L. Bade, S. R. Carpenter, J. J. Cole, M. L. Pace, P. C. Hanson & O. C. Langman, 2012. Spatial heterogeneity strongly affects estimates of ecosystem metabolism in two north temperate lakes. Limnology and Oceanography 57: 1689–1700.

    Article  Google Scholar 

  • Verduin, J., 1957. Daytime variations in phytoplankton photosynthesis. Limnology and Oceanography 2: 333–336.

    Google Scholar 

  • Verspagen, J. M. H., J. Passarge, K. D. Jöhnk, P. M. Visser, L. Peperzak, P. Boers, H. J. Laanbroek & J. Huisman, 2006. Water management strategies against toxic Microcystis blooms in the Dutch delta. Ecological Applications 16: 313–327.

    Article  PubMed  Google Scholar 

  • Vilar, J. M. G., R. V. Sole & J. M. Rubi, 2003. On the origin of plankton patchiness. Physica A 317: 239–246.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology, 3E. Lake and River Ecosystems. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Weyhenmeyer, G. A., E. Jeppesen, R. Adrian, L. Arvola, T. Blenckner, T. Jankowski, E. Jennings, P. Nõges, T. Nõges & D. Straile, 2007. Nitrate-depleted conditions on the increase in shallow northern European lakes. Limnology and Oceanography 52: 1346–1352.

    Article  CAS  Google Scholar 

  • Yang, Y., M. Leppäranta, Z. Li & B. Cheng, 2012. An ice model for Lake Vanajavesi, Finland. Tellus A 64: 17202. doi:10.3402/tellusa.v64i0.17202.

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank the field group from the Department of Physics and Lammi Biological Station (LBS) of the University of Helsinki (Kirsi Arvola, Mikko Heini, Jarmo Hinkkala, Elina Jaatinen, Ruibo Lei, John Loehr, Pertti Saaristo, Jussi Vilén and Yu Yang), and the laboratory technicians of LBS for the chemical measurements and determinations. The work was supported by the YMPANA research project (Development of a lake monitoring station). YMPANA was a part of the YMLI project and funded by the European Structural Fund Programmes (2008–2011). This work is also partly (Anniina Heini) supported by the Finnish Cultural Foundation, Häme Regional Fund. The Centre for Economic Development, Transport and the Environment of Häme provided logistic support during the study. We also thank Dr. John Loehr for his English corrections and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Arvola.

Additional information

Guest editors: D. Straile, D. Gerdeaux, D. M. Livingstone, P. Nõges, F. Peeters & K.-O. Rothhaupt / European Large Lakes III. Large lakes under changing environmental conditions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heini, A., Puustinen, I., Tikka, M. et al. Strong dependence between phytoplankton and water chemistry in a large temperate lake: spatial and temporal perspective. Hydrobiologia 731, 139–150 (2014). https://doi.org/10.1007/s10750-013-1777-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1777-1

Keywords

Navigation