Skip to main content
Log in

Leaf optical properties in amphibious plant species are affected by multiple leaf traits

  • PLANTS IN HYDROSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The amphibious plant species Sagittaria sagittifolia and Ranunculus lingua here serve as model systems to study differences in leaf optical properties of different leaf types that develop in aquatic and terrestrial environments. We aimed to determine leaf traits that explain most of the variability in the reflectance and transmittance spectra in the range from 280 to 880 nm. Comparisons of leaves of the same form revealed marked differences in their structures and particularly in the content of total methanol-soluble UV-absorbing compounds. Submerged leaves transmit radiation over the whole range measured, but emerged leaves transmit only at wavelengths from 500 to 650 nm, and above 690 nm. Redundancy analysis shows that biochemical leaf traits, namely the UV-absorbing compounds chlorophyll a and b, together with the specific leaf area (SLA), significantly affect the reflectance spectra, explaining 60% of the spectra variability. Pigment levels negatively affect reflectance, while the effect of SLA is positive. Physical traits like thickness of the palisade mesophyll, SLA, and thickness of the lower and upper epidermis, along with anthocyanin content, explain 62% of the transmittance spectra variability. This study provides new insight into the understanding of data collected for aquatic and semi-aquatic plants based on spectral analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asner, G. P. & R. E. Martin, 2008. Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sensing of Environment 112: 3958–3970.

    Article  Google Scholar 

  • Baldini, E., O. Facini, F. Nerozzi, F. Rossi & A. Rotondi, 1997. Leaf characteristics and optical properties of different wood species. Trees 12: 73–81.

    Article  Google Scholar 

  • Baltzer, J. L. & S. C. Thomas, 2005. Leaf optical responses to light and soil nutrient availability in temperate deciduous trees. American Journal of Botany 92: 223–241.

    Article  Google Scholar 

  • Boeger, M. R. T. & M. E. Poulson, 2003. Morphological adaptations and photosynthetic rates of amphibious Veronica anagallis-aquatica L. (Schropulariaceae) under different flow regimes. Aquatic Botany 75: 123–135.

    Article  Google Scholar 

  • Braendle, R. & R. M. M. Crawford, 1999. Plants as amphibians. Perspectives in Plant Ecology, Evolution and Systematics 2(1): 56–78.

    Article  Google Scholar 

  • Caldwell, M. M., 1968. Solar ultraviolet radiation as an ecological factor for alpine plants. Ecological Monographs 38: 243–268.

    Article  Google Scholar 

  • Capon, S. J. & M. A. Brock, 2006. Flood variability, soil seed bank dynamics and vegetation resilience in a desert floodplain. Freshwater Biology 51: 206–223.

    Article  Google Scholar 

  • Castro, K. L. & G. A. Sanchez-Azofeifa, 2008. Changes in spectral properties, chlorophyll content and internal mesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves. Sensors 8: 51–69.

    Article  CAS  PubMed Central  Google Scholar 

  • Dorken, M. E. & S. C. H. Barrett, 2003. Gender plasticity in Sagittaria sagittifolia (Alismataceae), a monoecious aquatic species. Plant Systematics and Evolution 237: 99–106.

    Article  Google Scholar 

  • Drumm, H. & H. Mohr, 1978. The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the Sorghum seedling. Photochemistry and Photobiology 27: 241–248.

    Article  CAS  Google Scholar 

  • Ehleringer, J., 1980. Leaf morphology and reflectance in relation to water and temperature stress. In Turner, N. C. & P. J. Kramer (eds), Adaptation of Plants to Water and High Temperature Stress. Wiley, New York: 295–308.

    Google Scholar 

  • Enríquez, S. & K. Sand-Jensen, 2003. Variation in light absorption properties of Mentha aquatica L. as function of leaf form: implications for plant growth. International Journal of Plants Sciences 164: 125–136.

    Article  Google Scholar 

  • Frost-Christensen, H. & K. Sand-Jensen, 1995. Comparative kinetics of photosynthesis in floating and submerged Potamogeton leaves. Aquatic Botany 51: 121–134.

    Article  CAS  Google Scholar 

  • Gaberščik, A., 1993. Measurements of apparent CO2 flux in amphibious plant Polygonum amphibium L. growing over environmental gradient. Photosynthetica 29: 473–476.

    Google Scholar 

  • Gaberščik, A., O. Urbanc-Berčič, N. Kržič, G. Kosi & A. Brancelj, 2003. The intermittent lake Cerknica: various faces of the same ecosystem. Lakes and Reservoirs: Research and Management 8: 159–168.

    Article  Google Scholar 

  • Germ, M. & A. Gaberščik, 2003. Comparison of aerial and submerged leaves in two amphibious species, Myosotis scorpioides and Ranunculus trichophyllus. Photosynthetica 41: 91–96.

    Article  CAS  Google Scholar 

  • Germ, M., Z. Mazej, A. Gaberščik & D. P. Häder, 2002. The influence of enhanced UV-B radiation on Batrachium trichophyllum and Potamogeton alpinus—aquatic macrophytes with amphibious character. Journal of Photochemistry and Photobiology B: Biology 66: 37–46.

    Article  CAS  Google Scholar 

  • Germ, M., Z. Mazej, A. Gaberščik & T. Trošt Sedej, 2006. The response of Ceratophyllum demersum L. and Myriophyllum spicatum L. to reduced, ambient, and enhanced ultraviolet-B radiation. Hydrobiologia (Den Haag) 1: 47–51.

    Article  Google Scholar 

  • Gitelson, A. A., Y. Zur, O. B. Chivkunova & M. N. Merzlyak, 2002. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology 75: 272–281.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, M. G. & D. R. Keiller, 2002. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant, Cell & Environment 25: 85–93.

    Article  CAS  Google Scholar 

  • Hostrup, O. & G. Wiegleb, 1991. Anatomy of leaves of submerged and emerged forms of Litorella uniflora (L.). Oecologia 68: 615–622.

    Google Scholar 

  • Hroudová, Z., L. Hrpuda, P. Zákravský & I. Ostrý, 1988. Ecobiology and Distribution of Sagittaria sagittifolia L. In Czechoslovakia. Folia geobotanica et phytotaxonomica 23: 225–336.

    Google Scholar 

  • Johansson, M. E. & C. Nilsson, 1993. Hydrochory, population dynamics and distribution of the clonal aquatic plant Ranunculus lingua. Journal of Ecology 81: 81–91.

    Article  Google Scholar 

  • Klančnik, K., M. Mlinar & A. Gaberščik, 2012. Heterophylly results in a variety of “spectral signatures” in aquatic plant species. Aquatic Botany 98: 20–26.

    Article  Google Scholar 

  • Knapp, A. K. & G. A. Carter, 1998. Variability in leaf optical properties among 26 species from a broad range of habitats. American Journal of Botany 85: 940–946.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara, A. & T. Nagata, 2002. Views on developmental plasticity of plants through heterophylly. Recent Research Development in Plant Physiology 3: 45–59.

    CAS  Google Scholar 

  • Larcher, W., 2003. Physiological Plant Ecology, Ecophysiology and Stress Physiology of Functional Groups, 4th ed. Springer, Berlin.

    Google Scholar 

  • Lee, D. W., S. F. Oberbauer, P. Johnson, B. Krishnapilay, M. Manson, H. Mohamed & S. K. Yap, 2000. Effects of irradiance and spectral quality on leaf structure and function in seedlings of two southeast Asian Hopea (Dipterocarpaceae) species. American Journal of Botany 87: 447–455.

    Article  CAS  PubMed  Google Scholar 

  • Les, D. H. & D. J. Sheridan, 1990. Biochemical heterophylly and flavonoid evolution in North American Potamogeton (Potamogetonaceae). American Journal of Botany 4: 453–465.

    Article  Google Scholar 

  • Levizou, E., P. Drilias, G. K. Psaras & Y. Manetas, 2005. Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co-occur. New Phytologist 165: 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H. K. & C. Buschmann, 2001a. Extraction of photosynthetic tissues: chlorophylls and carotenoids. In Current Protocols in Food Analytical Chemistry. Wiley, New York: F4.2.1–F4.2.6.

  • Lichtenthaler, H. K. & C. Buschmann, 2001b. Chlorophylls and carotenoids: measurement and characterisation by UV-VIS. In Current Protocols in Food Analytical Chemistry. Wiley, New York: F4.3.1–F4.3.8.

  • Meusel, H., 1965. Vergleichende Chorologie der zentraleuropaische Flora. Fischer Verlag, Jena.

    Google Scholar 

  • Rascio, N., F. Cuccato, F. Dalla Vechia, N. La Rocca & W. Larcher, 1999. Structural and functional features of the leaves of Ranunculus trichophyllus Chaix., a freshwater submerged macrophyte. Plant, Cell and Environment 22: 205–212.

    Article  Google Scholar 

  • Robe, W. E. & H. Griffiths, 1998. Adaptations for an amphibious life: changes in leaf morphology, growth rate, carbon and nitrogen investment, and reproduction during adjustment to emersion by the freshwater macrophyte Littorella uniflora. New Phytologist 140: 9–23.

    Article  Google Scholar 

  • Rozema, J., L. O. Björn, J. F. Bornman, A. Gaberščik, D. P. Häder, T. Trošt, M. Germ, M. Klisch, A. Gröniger, R. P. Sinha, M. Lebert, Y. Y. He, R. Buffoni-Hall, N. V. de Bakker, J. van de Staaij & B. B. Meijkamp, 2002. The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. Journal of Photochemistry and Photobiology B: Biology 66: 2–12.

    Article  CAS  Google Scholar 

  • Rybka, V. & M. Duchoslav, 2007. Influence of water depth on growth and reproduction of Ranunculus lingua. Belgian Journal of Botany 140: 130–135.

    Google Scholar 

  • Slaton, M. R., E. R. Hunt & W. K. Smith, 2001. Estimating near-infrared leaf reflectance from leaf structural characteristics. American Journal of Botany 88: 278–284.

    Article  CAS  PubMed  Google Scholar 

  • Šraj-Kržič, N. & A. Gaberščik, 2005. Photochemical efficiency of amphibious plants in an intermittent lake. Aquatic Botany 83: 281–288.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide. Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca.

  • Titus, J. E. & M. S. Adams, 1979. Coexistence and the comparative light relations of the submerged macrophytes Myriophyllum spicatum L. and Vallisneria americana Michx. Oecologia 40: 273–286.

    Article  Google Scholar 

  • Ustin, S. L., S. Jacquemoud & Y. Govaerts, 2001. Simulation of photon transport in a three-dimensional leaf: implications for photosynthesis. Plant, Cell and Environment 24: 1095–1103.

    Article  Google Scholar 

  • Warwick, N. W. M. & M. A. Brock, 2003. Plant reproduction in temporary wetlands: the effects of seasonal timing, depth, and duration of flooding. Aquatic Botany 77: 153–167.

    Article  Google Scholar 

  • Woodman, R. L. & G. W. Fernandes, 1991. Differential mechanical defense: herbivory, evapotranspiration and leaf-hairs. OIKOS 60: 11–19.

    Article  Google Scholar 

  • Woolley, J. T., 1971. Reflectance and transmittance of light by leaves. Plant Physiology 47: 656–662.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmerman, R. L., 2006. Light and photosynthesis in seagrass meadows, IV. Leaf optical properties. In Larkum, A. W. D., R. J. Orth & C. M. Duarte (eds), Seagrasses: Biology, Ecology and Conservation. Springer, Dordrecht: 307–309.

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Education, Science and Sport, Republic of Slovenia, through the programmes ‘Biology of plants’ (P1-0212) and ‘Young researchers’ (33135). The authors thank Anja Štular for assistance in practical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Klančnik.

Additional information

Guest editors: M. T. Ferreira, M. O'Hare, K. Szoszkiewicz & S. Hellsten / Plants in Hydrosystems: From Functional Ecology to Weed Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klančnik, K., Pančić, M. & Gaberščik, A. Leaf optical properties in amphibious plant species are affected by multiple leaf traits. Hydrobiologia 737, 121–130 (2014). https://doi.org/10.1007/s10750-013-1646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1646-y

Keywords

Navigation