Skip to main content
Log in

Atomistic and continuum modelling of temperature-dependent fracture of graphene

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive molecular dynamics study on the effects of nanocracks (a row of vacancies) on the fracture strength of graphene sheets at various temperatures. Comparison of the strength given by molecular dynamics simulations with Griffith’s criterion and quantized fracture mechanics theory demonstrates that quantized fracture mechanics is more accurate compared to Griffith’s criterion. A numerical model based on kinetic analysis and quantized fracture mechanics theory is proposed. The model is computationally very efficient and it quite accurately predicts the fracture strength of graphene with defects at various temperatures. Critical stress intensity factors in mode I fracture reduce as temperature increases. Molecular dynamics simulations are used to calculate the critical values of \(J\) integral (\(J_\mathrm{IC}\)) of armchair graphene at various crack lengths. Results show that \(J_\mathrm{IC}\) depends on the crack length. This length dependency of \(J_\mathrm{IC}\) can be used to explain the deviation of the strength from Griffith’s criterion. The paper provides an in-depth understanding of fracture of graphene, and the findings are important in the design of graphene based nanomechanical systems and composite materials

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson, TL (1991) Fracture mechanics fundamentals and applications. CRC Press, Inc

  • Ansari R, Ajori S, Motevalli B (2012) Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct 51:274–289

    Article  Google Scholar 

  • Arrhenius S (1889) On the reaction rate of the inversion of the non-refined sugar upon souring. Z Phys Chem 4:226–248

    Google Scholar 

  • Brenner DW, Shenderova O,A, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783–802

    Article  Google Scholar 

  • Cao A, Qu J (2013) Atomistic simulation study of brittle failure in nanocrystalline graphene under uniaxial tension. Appl Phys Lett 102:071902

    Article  Google Scholar 

  • Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Stormer HL, Heinz TF, Hone J (2009) Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nano 4:861–867

    Article  Google Scholar 

  • Clausius R (1870) On a mechanical theorem applicable to heat. Philos Mag 40:122–127

    Google Scholar 

  • Dewapriya, MAN (2012) Molecular dynamics study of effects of geometric defects on the mechanical properties of graphene. MASc thesis, The University of British Columbia, Canada

  • Dewapriya MAN, Phani AS, Rajapakse RKND (2013) Influence of temperature and free edges on the mechanical properties of graphene. Model Simul Mater Sci Eng 21:065017

    Article  Google Scholar 

  • Eichler A, Moser J, Chaste J, Zdrojek M, Wilson-Rae I, Bachtold A (2011) Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat Nano 6:339–342

    Article  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Phil Trans R Soc Lond A 221:163–198

    Article  Google Scholar 

  • Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Direct evidence for atomic defects in graphene layers. Nature 430:870–873

    Article  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  • Khare R, Mielke SL, Paci JT, Zhang S, Ballarini R, Schatz GC, Belytschko T (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75:075412

    Article  Google Scholar 

  • Kim K, Artyukhov VI, Regan W, Liu Y, Crommie MF, Yakobson BI, Zettl A (2012) Ripping graphene: preferred directions. Nano Lett 12:293–297

    Article  Google Scholar 

  • Kuo TL, Manyes SG, Li J, Barel I, Lu H, Berne BJ, Urbakh M, Klafter J, Fernández JM (2010) Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy. PNAS 107:11336–11340

    Article  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  • Liu TH, Pao CW, Chang CC (2012) Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations. Carbon 50:3465–3472

    Article  Google Scholar 

  • Lu Q, Gao W, Huang R (2011) Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Model Simul Mater Sci Eng 19:054006

    Article  Google Scholar 

  • Lu Q, Huang R (2010) Excess energy and deformation along free edges of graphene nanoribbons. Phys Rev B 81:155410

    Article  Google Scholar 

  • Mattoni A, Colombo L, Cleri F (2005) Atomic scale origin of crack resistance in brittle fracture. Phys Rev Lett 95:115501

    Article  Google Scholar 

  • Le M-Q, Batra RC (2013) Single-edge crack growth in graphene sheet under tension. Comput Mater Sci 69:381–388

    Article  Google Scholar 

  • Nośe S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Google Scholar 

  • Novoselov KS, Fal’ko VI, Colombo, Gellert PR, Schwab MG, Kim K (2012) A road map for graphene. Nature 490:192–200

  • Omeltchenko J, Yu R, Kalia K, Vashishta P (1997) Crack front propagation and fracture in a graphite sheet: a molecular-dynamics study on parallel computers. Phys Rev Lett 78:2148–2151

    Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  • Pugno NM, Ruoff RS (2004) Quantized fracture mechanics. Philos Mag 84:2829–2845

    Article  Google Scholar 

  • Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183

    Article  Google Scholar 

  • Shenderova OA, Brenner DW, Omeltchenko A, Su X, Yang LH (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 61:3877–3888

    Article  Google Scholar 

  • Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Appl Phys 112:6472

    Google Scholar 

  • Thomson R, Heieh C, Rana V (1971) Lattice trapping of fracture cracks. J Appl Phys 42:3154–3160

    Article  Google Scholar 

  • Tsai DH (1979) The virial theorem and stress calculation in molecular dynamics. J Chem Phys 70:1375–1382

    Article  Google Scholar 

  • Wang M, Yan C, Ma L, Hu N, Chen M (2012) Effect of defects on fracture strength of graphene sheets. Comput Mater Sci 54:236–239

    Article  Google Scholar 

  • Xu M, Tabarraei A, Paci J, Oswald J, Belytschko T (2012) A coupled quantum/continuum mechanics study of graphene fracture. Int J Fract 173:163–173

    Article  Google Scholar 

  • Zhang B, Mei L, Xiao H (2012a) Nanofracture of graphene under complex mechanical stresses. Appl Phys Lett 101:121915

    Article  Google Scholar 

  • Zhang T, Li X, Kadkhodaei S, Gao H (2012b) Flaw insensitive fracture in nanocrystalline graphene. Nano Lett 12:4605–4610

    Article  Google Scholar 

  • Zhao H, Aluru NR (2010) Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys 108:064321

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. N. D. Rajapakse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewapriya, M.A.N., Rajapakse, R.K.N.D. & Phani, A.S. Atomistic and continuum modelling of temperature-dependent fracture of graphene. Int J Fract 187, 199–212 (2014). https://doi.org/10.1007/s10704-014-9931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-014-9931-y

Keywords

Navigation