Skip to main content
Log in

New Prospects for de Broglie Interferometry

Grating Diffraction in the Far-Field and Poisson’s Spot in the Near-Field

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider various effects that are encountered in matter wave interference experiments with massive nanoparticles. The text-book example of far-field interference at a grating is compared with diffraction into the dark field behind an opaque aperture, commonly designated as Poisson’s spot or the spot of Arago. Our estimates indicate that both phenomena may still be observed in a mass range exceeding present-day experiments by at least two orders of magnitude. They both require, however, the development of sufficiently cold, intense and coherent cluster beams. While the observation of Poisson’s spot offers the advantage of non-dispersiveness and a simple distinction between classical and quantum fringes in the absence of particle wall interactions, van der Waals forces may severely limit the distinguishability between genuine quantum wave diffraction and classically explicable spots already for moderately polarizable objects and diffraction elements as thin as 100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. de Broglie, L.: Nature 112, 540 (1923)

    Article  ADS  Google Scholar 

  2. Hasselbach, F.: Rep. Prog. Phys. 73, 016101 (2010)

    Article  ADS  Google Scholar 

  3. Rauch, H., Werner, A.: Neutron Interferometry: Lessons in Experimental Quantum Mechanics. Oxford Univ. Press, Oxford (2000)

    Google Scholar 

  4. Cronin, A.D., Schmiedmayer, J., Pritchard, D.E.: Rev. Mod. Phys. 81, 1051 (2009)

    Article  ADS  Google Scholar 

  5. Bordé, C.J., Courtier, N., du Burck, F., Goncharov, A.N., Gorlicki, M.: Phys. Lett. A 188, 187 (1994)

    Article  ADS  Google Scholar 

  6. Arndt, M., Nairz, O., Voss-Andreae, J., Keller, C., der Zouw, G.V., Zeilinger, A.: Nature 401, 680 (1999)

    Article  ADS  Google Scholar 

  7. Rauch, H., Treimer, W., Bonse, U.: Phys. Rev. A 47, 369 (1974)

    Google Scholar 

  8. Greenberger, D.: Rev. Mod. Phys. 55, 875 (1983)

    Article  ADS  Google Scholar 

  9. Aspelmeyer, M., Schwab, K.: New J. Phys. 10, 095001 (2008)

    Article  ADS  Google Scholar 

  10. Brezger, B., Hackermüller, L., Uttenthaler, S., Petschinka, J., Arndt, M., Zeilinger, A.: Phys. Rev. Lett. 88, 100404 (2002)

    Article  ADS  Google Scholar 

  11. Reiger, E., Hackermüller, L., Berninger, M., Arndt, M.: Opt. Commun. 264, 326 (2006)

    Article  ADS  Google Scholar 

  12. Gerlich, S., Hackermüller, L., Hornberger, K., Stibor, A., Ulbricht, H., Gring, M., Goldfarb, F., Savas, T., Müri, M., Mayor, M., Arndt, M.: Nat. Phys. 3, 711 (2007)

    Article  Google Scholar 

  13. Arndt, M., Hornberger, K.: In: Deveaud-Plédran, B., Quattropani, A., Schwendimann, P. (eds.) Quantum Coherence in Solid State Systems. Proceedings of the International School of Physics “Enrico Fermi”, Course CLXXI, vol. 171, pp. 103–130. Società Italiana di Fisica (2009)

    Google Scholar 

  14. Haberland, M.M., Karrais, H.: Z. Phys. D 20, 413 (1991)

    ADS  Google Scholar 

  15. Deachapunya, S., Fagan, P.J., Major, A.G., Reiger, E., Ritsch, H., Stefanov, A., Ulbricht, H., Arndt, M.: Eur. Phys. J. D 46, 307 (2008)

    ADS  Google Scholar 

  16. Marksteiner, M., Haslinger, P., Ulbricht, H., Sclafani, M., Oberhofer, H., Dellago, C., Arndt, M.: J. Am. Soc. Mass. Spectrom. 19, 1021 (2008)

    Article  Google Scholar 

  17. Juffmann, T., Truppe, S., Geyer, P., Major, A.G., Deachapunya, S., Ulbricht, H., Arndt, M.: Phys. Rev. Lett. 103, 263601 (2009)

    Article  ADS  Google Scholar 

  18. Jönsson, C., Brandt, D., Hirschi, S.: Am. J. Phys. 42, 4 (1974)

    Article  Google Scholar 

  19. Freimund, D.L., Aflatooni, K., Batelaan, H.: Nature 413, 142 (2001)

    Article  ADS  Google Scholar 

  20. Gronniger, G., Barwick, B., Batelaan, H., Savas, T., Pritchard, D., Cronin, A.: Appl. Phys. Lett. 87, 124104 (2005)

    Article  ADS  Google Scholar 

  21. Gähler, R., Zeilinger, A.: Am. J. Phys. 59, 316 (1991)

    Article  ADS  Google Scholar 

  22. Martin, P., Gould, P., Oldaker, B., Miklich, A., Pritchard, D.: Physica B-C 151, 255 (1988)

    Article  ADS  Google Scholar 

  23. Keith, D.W., Ekstrom, C.R., Turchette, Q.A., Pritchard, D.E.: Phys. Rev. Lett. 66, 2693 (1991)

    Article  ADS  Google Scholar 

  24. Carnal, O., Faulstich, A., Mlynek, J.: Appl. Phys. B 53, 88 (1991)

    Article  ADS  Google Scholar 

  25. Chapman, M.S., Ekstrom, C.R., Hammond, T.D., Rubenstein, R.A., Schmiedmayer, J., Wehinger, S., Pritchard, D.E.: Phys. Rev. Lett. 74, 4783 (1995)

    Article  ADS  Google Scholar 

  26. Schöllkopf, W., Toennies, J.: J. Chem. Phys. 104, 1155 (1996)

    Article  ADS  Google Scholar 

  27. Nairz, O., Brezger, B., Arndt, M., Zeilinger, A.: Phys. Rev. Lett. 87, 160401 (2001)

    Article  ADS  Google Scholar 

  28. Nairz, O., Arndt, M., Zeilinger, A.: Am. J. Phys. 71, 319 (2003)

    Article  ADS  Google Scholar 

  29. Komrska, J.: Advances in Electronics and Electron Physics, pp. 139–234. Academic, New York (1971)

    Google Scholar 

  30. Matteucci, G.: Am. J. Phys. 58, 1143 (1990)

    Article  ADS  Google Scholar 

  31. Kearney, P.D., Klein, A.G., Opat, G., Gähler, R.: Nature 287, 313 (1980)

    Article  ADS  Google Scholar 

  32. Nowak, S., Stuhler, N., Pfau, T., Mlynek, J.: Phys. Rev. Lett. 81, 5792 (1998)

    Article  ADS  Google Scholar 

  33. Doak, R.B., Grisenti, R.E., Rehbein, S., Schmahl, G., Toennies, J.P., Wöll, C.: Phys. Rev. Lett. 83, 4229 (1999)

    Article  ADS  Google Scholar 

  34. Reisinger, T., Patel, A., Reingruber, H., Fladischer, K., Ernst, W., Bracco, G., Smith, H., Holst, B.: Phys. Rev. A 79, 053823 (2009)

    Article  ADS  Google Scholar 

  35. Diosi, L.: Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  36. Diosi, L.: Braz. J. Phys. 35 (2004)

  37. Penrose, R.: Gen. Relativ. Gravit. 28, 581 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Bassi, A., Ghirardi, G.: Phys. Rep. 379, 257 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Wang, C., Bingham, R., Mendonca, J.T.: Class. Quantum Gravity 23, L59 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Carlip, S.: Class. Quantum Gravity 25, 154010 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  41. Adler, S.L., Bassi, A.: Science 325, 275 (2009)

    Article  Google Scholar 

  42. Berninger, M., Stéfanov, A., Deachapunya, S., Arndt, M.: Phys. Rev. A 76, 013607 (2007)

    Article  ADS  Google Scholar 

  43. Wang, J., Yang, M., Jellinek, J., Wang, G.: Phys. Rev. A 74, 023202 (2006)

    Article  ADS  Google Scholar 

  44. Grisenti, R.E., Schöllkopf, W., Toennies, J.P., Hegerfeldt, G.C., Köhler, T.: Phys. Rev. Lett. 83, 1755 (1999)

    Article  ADS  Google Scholar 

  45. Nimmrichter, S., Hornberger, K.: Phys. Rev. A 78, 023612 (2008)

    Article  ADS  Google Scholar 

  46. Geim, A., Novoselov, K.: Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  47. Schnietz, M., Turchanin, A., Nottbohm, C., Beyer, A., Solak, H., Hinze, P., Weimann, T., Gölzhäuser, A.: Small 5, 2651 (2009)

    Article  Google Scholar 

  48. Hornberger, K., Gerlich, S., Ulbricht, H., Hackermüller, L., Nimmrichter, S., Goldt, I., Boltalina, O., Arndt, M.: New J. Phys. 11, 043032 (2009)

    Article  ADS  Google Scholar 

  49. Chapman, M.S., Ekstrom, C.R., Hammond, T.D., Schmiedmayer, J., Tannian, B.E., Wehinger, S., Pritchard, D.E.: Phys. Rev. A 51, R14 (1995)

    Article  ADS  Google Scholar 

  50. Patorski, K.: Opt. Acta 30, 745 (1983)

    Article  ADS  Google Scholar 

  51. Clauser, J.F., Li, S.: Phys. Rev. A 49, R2213 (1994)

    Article  ADS  Google Scholar 

  52. McMorran, B.J., Cronin, A.D.: New J. Phys. 11, 033021 (2009)

    Article  ADS  Google Scholar 

  53. Harvey, J., Forgham, J.: Am. J. Phys. 52, 243 (1984)

    Article  ADS  Google Scholar 

  54. Lucke, R.: Eur. J. Phys. 27, 193 (2006)

    Article  MATH  ADS  Google Scholar 

  55. Dauger, D.: Comput. Phys. 10, 591 (1996)

    Article  ADS  Google Scholar 

  56. Hornberger, K., Sipe, J.E., Arndt, M.: Phys. Rev. A 70, 053608 (2004)

    Article  ADS  Google Scholar 

  57. Landau, L.D., Lifshitz, E.M.: Classical Mechanics. Pergamon Press, Oxford (1960)

    Google Scholar 

  58. Biocell, B.: Archway House, Cardiff, UK (2010). info@bbigold.com

  59. Mostepanenko, V.M., Trunov, N.N.: The Casimir Effect and Its Applications. Clarendon, Oxford (1997)

    Google Scholar 

  60. Zaheer, S., Rahi, S.J., Emig, T., Jaffe, R.L.: Phys. Rev. A 81, 030502 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Arndt.

Additional information

This paper is dedicated to Daniel Greenberger and Helmut Rauch, two pioneers in explorations of the foundations of quantum physics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juffmann, T., Nimmrichter, S., Arndt, M. et al. New Prospects for de Broglie Interferometry. Found Phys 42, 98–110 (2012). https://doi.org/10.1007/s10701-010-9520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9520-5

Keywords

Navigation