Skip to main content
Log in

Identification of QTLs associated with haze active proteins in barley

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Haze formation in beer is a trait closely related to beer quality and it is largely affected by the haze active proteins (HAPs) in barley (Hordeum vulgare L.). Up to date, little is known about the genetics of HAPs and relevant genes. In this study, we obtained the beer samples from a Franklin/Yerong double haploid (DH) population and the two parents using micro-malting and micro-brewing, and determined tannin-related HAPs. It was found that there was a wide difference in HAPs among all lines of the DH population, and Yerong had a higher HAPs content than Franklin. Quantitative trait locus (QTL) analysis identified five QTLs associated with HAPs in beer, being located on chromosomes 1HS, 5HL and 6HS, respectively. The loci QHAP1.FrYe-1H and QHAP2.FrYe-1H were overlapped in the short arm of chromosome 1H, and they controlled HAP1 and HAP2, respectively. Moreover, the candidate genes were also predicted based on published whole barley genome sequence and corresponding gene annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asano K, Shinagawa K, Hashimoto N (1982) Characterization of haze-forming proteins of beer and their roles in chill haze formation. J Am Soc Brew Chem 40:147–154

    CAS  Google Scholar 

  • Cai SG, Yu G, Chen XH, Huang YC, Jiang XG, Zhang GP, Jin XL (2013) Grain protein content variation and its association analysis in barley. BMC Plant Biol 13:35–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chapon L (1993) Nephelometry as a method for studying the relations between polyphenols and proteins. J Inst Brew 99:49–56

    Article  CAS  Google Scholar 

  • Dai F, Qiu L, Ye LZ, Wu DZ, Zhou MX, Zhang GP (2011) Identification of a phytase gene in barley (Hordeum vulgare L.). PLoS One 6:e18829. doi:10.1371/journal.pone.0018829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  CAS  PubMed  Google Scholar 

  • Evans DE, Robinson LH, Sheehan MC, Tolhurst RL, Hill A, Skerritt JS, Barr AR (2003) Application of immunological methods to differentiate between foam-positive and haze-active proteins originating from malt. J Am Soc Brew Chem 61:55–62

    CAS  Google Scholar 

  • Fukuda K, Saito W, Arai S, Aida Y (1999) Production of a novel proanthocyanidin-free barley line with high quality. J Inst Brew 105:179–183

    Article  CAS  Google Scholar 

  • Garvin DF, Miller-Garvin JE, Viccars EA, Jacobsen JV, Brown AHD (1998) Identification of molecular markers linked to ant28-484, a mutation that eliminates proanthocyanidin production in barley seeds. Crop Sci 38:1250–1255

    Article  CAS  Google Scholar 

  • Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of north-American barley germplasm. Theor Appl Genet 87:392–401

    Article  CAS  PubMed  Google Scholar 

  • Iimure T, Nankaku N, Watanabe-Sugimoto M, Hirota N, Zhou TS, Kihara M, Hayashi K, Ito K, Sato K (2009) Identification of novel haze-active beer proteins by proteome analysis. J Cereal Sci 49:141–147

    Article  CAS  Google Scholar 

  • Jin B, Li L, Li B, Liu BG, Liu GQ, Zhu YK (2009) Proteomics study of silica eluent proteins in beer. J Am Soc Brew Chem 67:183–188

    CAS  Google Scholar 

  • Leiper KA, Stewart GG, McKeown IP (2003) Beer polypeptides and silica gel—Part I. Polypeptides involved in haze formation. J Inst Brew 109:57–72

    Article  CAS  Google Scholar 

  • Li CD, Tarr A, Lance RCM, Harasymow S, Uhlmann J, Westcot S, Young KJ, Grime CR, Cakir M, Broughton S, Appelsa R (2003) A major QTL controlling seed dormancy and pre-harvest sprouting/grain alpha-amylase in two-rowed barley (Hordeum vulgare L.). Aust J Agric Res 54:1303–1313

    Article  CAS  Google Scholar 

  • Li H, Vaillancourt R, Mendham N, Zhou M (2008) Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genom 9:401

    Article  Google Scholar 

  • Li CD, Cakir M, Lance R (2010) Genetic improvement of malting quality through conventional breeding and marker-assisted selection. In: Zhang GP, Li CD (eds) Genetics and improvement of barley malt quality, 1st edn. Springer, Berlin/Heidelberg, pp 260–292

    Google Scholar 

  • Marquez-Cedillo LA, Hayes PM, Jones BL, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich E, Wesenberg DM, Barley NA (2000) QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 101:173–184

    Article  CAS  Google Scholar 

  • Mather D, Tinker N, LaBerge D, Edney M, Jones B, Rossnagel B, Legge W, Briggs K, Irvine R, Falk D (1997) Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci 37:544–554

    Article  CAS  Google Scholar 

  • Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, Graner A, Matsumoto T, Sato K, Schulman A, Muehlbauer GJ, Stein N, Ariyadasa R, Schulte D, Poursarebani N, Zhou RN, Steuernagel B, Mascher M, Scholz U, Shi BJ, Langridge P, Madishetty K, Svensson JT, Bhat P, Moscou M, Resnik J, Close TJ, Muehlbauer GJ, Hedley P, Liu H, Morris J, Waugh R, Frenkel Z, Korol A, Berges H, Graner A, Stein N, Steuernagel B, Taudien S, Groth M, Felder M, Platzer M, Brown JWS, Schulman A, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Taudien S, Sampath D, Swarbreck D, Scalabrin S, Zuccolo A, Vendramin V, Morgante M, Mayer KFX, Schulman A, Conso IBGS (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    CAS  PubMed  Google Scholar 

  • Panozzo JF, Eckermann PJ, Mather DE, Moody DB, Black CK, Collins HM, Barr AR, Lim P, Cullis BR (2007) QTL analysis of malting quality traits in two barley populations. Aust J Agric Res 58:858–866

    Article  CAS  Google Scholar 

  • Robinson LH, Healy P, Stewart DC, Eglinton JK, Ford CM, Evans DE (2007a) The identification of a barley haze active protein that influences beer haze stability: the genetic basis of a barley malt haze active protein. J Cereal Sci 45:335–342

    Article  CAS  Google Scholar 

  • Robinson LH, Juttner J, Milligan A, Lahnstein J, Eglinton JK, Evans DE (2007b) The identification of a barley haze active protein that influences beer haze stability: cloning and characterisation of the barley SE protein as a barley trypsin inhibitor of the chloroform/methanol type. J Cereal Sci 45:343–352

    Article  CAS  Google Scholar 

  • Shewry PR, Tatham AS, Halford NG (1999) Prolamin storage proteins. In: Shewry PR, Casey R (eds) Seed proteins. Springer, Netherlands, pp 11–78

    Chapter  Google Scholar 

  • Siebert KJ (1999) Effects of protein-polyphenol interactions on beverage haze, stabilization, and analysis. J Agric Food Chem 47:353–362

    Article  CAS  PubMed  Google Scholar 

  • Siebert KJ, Carrasco A, Lynn PY (1996) Formation of protein-polyphenol haze in beverages. J Agric Food Chem 44:1997–2005

    Article  CAS  Google Scholar 

  • Siebert KJ, Lynn PY, Clark DF, Hatfield GR (2005) Comparison of methods for assessing colloidal stability of beer. Master Brew Assoc Am 42:7–12

    CAS  Google Scholar 

  • Stewart DC, Hawthorne D, Evans DE (1998) Cold sterile filtration: a small scale filtration test and investigation of membrane plugging. J Inst Brew 104:321–326

    Article  Google Scholar 

  • Szucs P, Blake VC, Bhat PR, Chao SAM, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome-Us 2:134–140

    Article  CAS  Google Scholar 

  • Thompson CC, Forward E (1969) European Brewery convention: haze and foam group. Towards the chemical prediction of shelf life. J Inst Brew 75:37–42

    Article  CAS  Google Scholar 

  • Van Ooijen J (2004) MapQTL® 5. Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Wang Y, Gupta S, Wallwork H, Zhang X-Q, Zhou G, Broughton S, Loughman R, Lance R, Wu D, Shu X, Li C (2014) Combination of seedling and adult plant resistance to leaf scald for stable resistance in barley. Mol Breed 34:2081–2089

    Article  CAS  Google Scholar 

  • Ye LZ, Dai F, Qiu L, Sun DF, Zhang GP (2011) Allelic diversity of a beer haze active protein gene in cultivated and Tibetan wild barley and development of allelic specific markers. J Agric Food Chem 59:7218–7223

    Article  CAS  PubMed  Google Scholar 

  • Ye LZ, Huang L, Huang YQ, Wu DZ, Hu HL, Li CD, Zhang GP (2014) Haze activity of different barley trypsin inhibitors of the chloroform/methanol type (BTI-CMe). Food Chem 165:175–180

    Article  CAS  PubMed  Google Scholar 

  • Zale JM, Clancy JA, Ullrich SE, Jones BL, Hayes PM (2000) Summary of barley malting quality QTLs mapped in various populations. Barley Genet Newsl 30:44–54

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by Natural Science Foundation of China (31171145, 31171544 and 31201166), 948 Project, Ministry of Agriculture, China (2012-Z25) and China Agriculture Research System (CARS-05). We are deeply grateful to professors Rugen Xu of Yangzhou University, and Jian Lu of Jiangnan University, China for their help in micro-malting and brewing, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Huang, Y., Hu, H. et al. Identification of QTLs associated with haze active proteins in barley. Euphytica 205, 799–807 (2015). https://doi.org/10.1007/s10681-015-1411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1411-6

Keywords

Navigation