Skip to main content
Log in

Mapping quantitative trait loci determining seed longevity in tobacco (Nicotiana tabacum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Seed longevity is a crucial issue for germplasm conservation and seed marketing. This trait is determined not only by environmental conditions, but also by genetic factors. Molecular mapping of responsible loci has been performed with several crops, but not with tobacco (Nicotiana tabacum L.). In the present study, we investigate 122 recombinant inbred lines derived from a cross between the cultivars Florida 301 and Hicks. Four germination-related traits were studied by examining seeds either untreated or after controlled deterioration (CD): total germination (TG, %), normal germination (%), time to reach 50 % of TG (h), and the area under the curve after 200 h of germination. Whereas Hicks exhibited high germination percentage and speed in untreated (fresh) seeds, Florida 301 seems to withstand the CD treatment better, having increased seed longevity. In total, four genomic regions located on four different linkage groups (LGs) were identified to be associated with the selected traits. Positive alleles for the individual traits were contributed by both parents. A major quantitative trait locus (QTL) for high percentage TG located on LG 8/18 appeared in both control and deteriorated seeds and was contributed by Hicks. In contrast, Florida 301 donated a favorable allele for germination speed on LG seven after CD only. The position of this locus compared well with a QTL detected in the same population, in a former study examining resistance against the black shank disease caused by Phytophthora nicotianae). The effects of environmental growing conditions of the mother plants on seed longevity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agacka M, Depta A, Börner M, Doroszewska T, Hay FR, Börner A (2013) Viability of Nicotiana spp. seeds stored under ambient temperature. Seed Sci Technol 41:474–478

    Article  Google Scholar 

  • Agacka M, Laskowska D, Doroszewska T, Hay FR, Börner A (2014) Longevity of Nicotiana seeds conserved at low temperatures in ex situ genebanks. Seed Sci Technol 42:355–362

    Article  Google Scholar 

  • Bentsink L, Alonso-Blanco C, Vreugdenhil D, Tesnier K, Groot SPC, Koornneef M (2000) Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol 124:1595–1604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123:219–230

    Article  PubMed Central  PubMed  Google Scholar 

  • Burgess JL (1938) Report on project to determine the percentage and duration of viability of different varieties of soybeans grown in North Carolina. Proc Assoc Off Seed Anal 23:69

    Google Scholar 

  • Clerkx EJM, El-Lithy ME, Vierling E, Ruys GJ, Blankestijin-De Vries H, Groot SPC, Vreugdenhil D, Koornneef M (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135:432–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haberlandt F (1873) Die Keimfähigkeit unserer Getreidekörner, ihre Dauer und die Mittel ihrer Erhaltung (The germinating capacity of our cereals, their longevity and the means of preserving it). Wien Landw Ztg 22:126

    Google Scholar 

  • Hampton JG, TeKrony DM (1995) Handbook of vigour test methods. International Seed Testing Association, Zürich, p 117

    Google Scholar 

  • Hay FR, Adams J, Manger K, Probert R (2008) The use of non-saturated lithium chloride solutions for experimental control of seed water content. Seed Sci Technol 36:737–746

    Article  Google Scholar 

  • ISTA (2014) International rules for seed testing. International Seed Testing Association, Bassersdorf

    Google Scholar 

  • Johnson J, Murwin HF, Ogden WB (1930) The germination of tobacco seed. Wis Agric Exp Station Res Bull 104:15

    Google Scholar 

  • Jones JW (1926) Germination of rice seed as affected by temperature, fungicides, and age. Agron J 18:576–592

    Article  Google Scholar 

  • Joosen RVL, Kodde J, Willems LAJ, Ligterink W, van der Plas LHW, Hilhorst HWM (2010) Germinator: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant J 62:148–159

    Article  CAS  PubMed  Google Scholar 

  • Kingcaid RR (1943) Effect of storage conditions on the viability of tobacco seed. J Agric Res 67:407–410

    Google Scholar 

  • Landjeva S, Lohwasser U, Börner A (2010) Genetic mapping within the wheat D genome reveals QTLs for germination, seed vigour and longevity, and early seedling growth. Euphytica 171:129–143

    Article  Google Scholar 

  • Miura K, Lyn SY, Yano M, Nagamine T (2002) Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet 104:981–986

    Article  CAS  PubMed  Google Scholar 

  • Nagel M, Börner A (2010) The longevity of crop seeds stored under ambient conditions. Seed Sci Res 20:1–12

    Article  Google Scholar 

  • Nagel M, Vogel H, Landjeva S, Buck-Sorlin G, Lohwasser G, Scholz U, Börner A (2009) Seed conservation in ex situ genebanks—genetic studies on longevity in barley. Euphytica 170:5–14

    Article  CAS  Google Scholar 

  • Nagel M, Rehman-Arif MA, Rosenhauer M, Börner A (2010) Longevity of seeds—intraspecific differences in the Gatersleben genebank collections. In: Proc 60th Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, Gumpenstein, Österreich, 24–26 Nov 2009, pp 179–181

  • Nagel M, Rosenhauer M, Willner E, Snowdon RJ, Friedt W, Börner A (2011) Seed longevity in oilseed rape (Brassica napus L.)—genetic variation and QTL mapping. Plant Genet Resour 9:260–263

    Article  CAS  Google Scholar 

  • Nagel M, Kranner I, Neumann K, Rolletschek H, Seal C, Colville L, Fernández-Marín B, Börner A (2014) Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background, developmental and environmental conditions in barley. Plant Cell Environ. doi:10.1111/pce.12474

    Google Scholar 

  • Priestley DA, Cullinan VI, Wolfe J (1985) Differences in seed longevity at the species level. Plant Cell Environ 8:557–562

    Article  Google Scholar 

  • Rehman Arif MA, Nagel M, Neumann K, Kobiljski B, Lohwasser U, Börner A (2012) Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches. Euphytica 186:1–13

    Article  Google Scholar 

  • Revilla P, Butrón A, Rodríguez VM, Malvar RA, Ordás A (2009) Identification of genes related to germination in aged maize seed by screening natural variability. J Exp Bot 60:4151–4157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwember AR, Bradford KJ (2010) Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. J Exp Bot 61:4423–4436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shamel AD, Cobey WW (1907) Tobacco Breeding. US Dept Agric Bur Plant Ind Bull 96:71

    Google Scholar 

  • Singh RK, Raipuria RK, Bhatia VS, Rani A, Pushpendra, Husain SM, Chauhan D, Chauhan GS, Mohapatra T (2008) SSR markers associated with seed longevity in soybean. Seed Sci Technol 36:162–167

    Article  Google Scholar 

  • Vontimitta V, Lewis RS (2012) Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beinhart-1000. Mol Breed 29:89–98

    Article  Google Scholar 

  • Walters C, Wheeler LM, Grotenhuis JM (2005) Longevity of seeds stored in a genebank: species characteristics. Seed Sci Res 15:1–20

    Article  CAS  Google Scholar 

  • Xiao B, Drake K, Vontimitta V, Tong Z, Zhang X, Li M, Leng X, Li Y, Lewis RS (2013) Location of genomic regions contributing to Phytophthora nicotianae resistance in tobacco cultivar Florida 301. Crop Sci 53:473–481

    Article  CAS  Google Scholar 

  • Xue Y, Zhang SQ, Yao QH, Peng RH, Xiong AS, Li X, Zhu WM, Zhu YY, Zha DS (2008) Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Euphytica 164:739–744

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng DL, Guo LB, Xu YB, Yasukumi K, Zhu LH, Qian Q (2006) QTL analysis of seed storability in rice. Plant Breed 125:57–60

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sibylle Pistrick and Gabriele Matzig for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Börner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agacka-Mołdoch, M., Nagel, M., Doroszewska, T. et al. Mapping quantitative trait loci determining seed longevity in tobacco (Nicotiana tabacum L.). Euphytica 202, 479–486 (2015). https://doi.org/10.1007/s10681-015-1355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1355-x

Keywords

Navigation