Skip to main content
Log in

Transcript analyses of the gene associated with CMS in Brassica napus

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

We analysed DNA and complementary DNA (cDNA) from two inbred lines (CMS-ARIT121 and CMS-ARIT2) along with their respective maintainer lines with eight known genes (atpa, atp6, atp9, coxI, coxII, orfB, orf222 and orf224) reported in other cytoplasmic male sterility (CMS) systems. DNA analyses indicated that only orf224 was different in the maintainer and CMS in ARIT121. Sequencing analysis indicated that CMS-ARIT121 has a similar sequence to that of polima CMS. However, CMS-ARIT2 was quite unique, with no sequence difference at DNA or cDNA level in all eight candidate genes, with the exception of a two-base substitution in the atp6 gene between the CMS and maintainer lines. The similar amplification pattern with all primers, especially orf224, indicates that CMS-ARIT2 is unique and does not correspond to polima, ogura or nap. However, further research is required to establish the causes of sterility in this cms, since we could not find any significant difference at transcript level between CMS-ARIT2 and its corresponding maintainer line. However, the same restorer PR121 as for CMS-ARIT121 was able to restore CMS-ARIT2, and as such can be used for hybrid seed production in Brassica napus L. Overall, this study provides important information for breeders selecting new cytoplasmic male sterility (CMS) in B. napus L. and use of molecular markers to identify CMS lines at early seedling stage that will enhance the B. napus L. breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akagi H, Sakamoto M, Shinjyo C, Shimada H, Fujjmura H (1994) A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Curr Genet 25:52–58

    Article  CAS  PubMed  Google Scholar 

  • Akagi H, Nakamura A, Sawada R, Oka M, Fujjmura T (1995) Genetic diagnosis of cytoplasmic male-sterile cybrid plants of rice. Theor Appl Genet 90:948–951

    Article  CAS  PubMed  Google Scholar 

  • Arumugam N, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (1996) Synthesis of hexaploid (AABBCC) somatic hybrids: a bridging material for transfer of ‘tour’ cytoplasmic male sterility to different Brassica species. Theor Appl Genet 92:762–768

    Article  CAS  PubMed  Google Scholar 

  • Beckett JB (1971) Classification of male-sterile cytoplasms in maize (Zea mays). Crop Sci 11:724–727

    Google Scholar 

  • Bhat SR, Vijayan P, Ashutosh, Dwivedi KK, Prakash S (2006) Diplotaxis erucoides-induced cytoplasmic male sterility in Brassica juncea is rescued by the Moricandia arvensis restorer: genetic and molecular analyses. Plant Breed 125:150–155

    Article  CAS  Google Scholar 

  • Bhat SR, Kumar P, Prakash S (2008) An improved cytoplasmic male sterile (Diplotaxis berthautii) Brassica juncea: identification of restorer and molecular characterization. Euphytica 159:145–152

    Article  CAS  Google Scholar 

  • Bonhomme S, Budar F, Lancelin D, Small I, DeFrance MC, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol Genet 235:340–348

    Article  CAS  Google Scholar 

  • Delorme V, Keen CL, Rai KN, Leaver CJ (1997) Cytoplasmic–nuclear male sterility in pearl millet: comparative RFLP and transcript analyses of isonuclear male-sterile lines. Theor Appl Genet 95:961–968

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Frankel R, Galun E (1977) Pollination mechanisms, reproduction and plant breeding. Springer, Berlin, p 281, NP

  • Fu TD (1981) Production and research of rapeseed in the People’s Republic of China. Eucarpia Crucif Newsl 16:6–7

    Google Scholar 

  • Fu TD, Yang GS, Yang XN, Ma CZ (1995) Discovery, study and utilization of polima cytoplasmic male sterility in Brassica napus L. Prog Nat Sci 5:169–177

    Google Scholar 

  • Gallagher LJ, Betz SK, Chase CD (2002) Mitochondrial RNA editing truncates a chimeric open reading frame associated S male-sterility in maize. Curr Genet 42:179–184

    Article  CAS  PubMed  Google Scholar 

  • Hanson MR (1991) Plant mitochondrial mutations and male sterility. Annu Rev Genet 25:461–486

    Article  CAS  PubMed  Google Scholar 

  • Hanson MH, Conde MF (1985) Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic–nuclear interactions affecting male fertility in plants. Int Rev Cytol 94:213–267

    Article  CAS  Google Scholar 

  • He S, Yu ZH, Vallejos CE, Mackenzie SA (1995) Pollen fertility restoration by nuclear gene Fr in common bean: an Fr linkage map and the mode of Fr action. Theor Appl Genet 90:1056–1062

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Fried W (1999) CMS sources in sunflower: different origin but same mechanism? Theor Appl Genet 98:195–201

    Article  Google Scholar 

  • Howad W, Kempken F (1997) Cell type-specific loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. Proc Natl Acad Sci USA 94:11090–11095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwabuchi M, Kyozuka J, Shimamoto K (1993) Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J 12:1437–1446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ke GL, Zhao ZY, Song YZ, Zhang LG, Zhao LM (1992) Breeding of alloplasmic male sterile line cms3411-7 in Chinese cabbage (Brassica campestrls L. ssp. pekinensis (lour) olsson) and its application. Acta Hortic Sin 19:333–340

    Google Scholar 

  • L’Homme Y, Brown GG (1993) Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucleic Acids Res 21:1903–1909

    Article  PubMed Central  PubMed  Google Scholar 

  • L’Homme Y, Stahl RJ, Li XQ, Hameed A, Brown GG (1997) Brassica napus cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr Genet 31:325–335

    Article  PubMed  Google Scholar 

  • Liu Z, Guan C, Zhao F, Chen S (2005) Inheritance and mapping of a restorer gene for the rapeseed cytoplasmic male sterile line 681A. Plant Breed 124:5–8

    Article  CAS  Google Scholar 

  • Monegar F, Smart CJ, Leaver CJ (1994) Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J 13:8–17

    Google Scholar 

  • Nahm SH, Lee HJ, Lee SW, Joo GY, Harn CH, Yang SG, Min BW (2005) Development of a molecular marker specific to a novel CMS line in radish (Raphanus sativus L.). Theor Appl Genet 111:1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Ogura H (1968) Studies on the new male-sterility in Japanese radish with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Agric Kagoshima Univ 6:39–78

    Google Scholar 

  • Perryman RA, Mooney B, Lennon AM, Moore AL, Harmey MA (1993) In: Brennicke A, Kuck U (eds) Plant mitochondria: with emphasis on RNA editing and cytoplasmic male sterility. VCH, Weinheim, pp 315–322

    Google Scholar 

  • Pradhan AK, Mukhopadhyay A, Pental D (1991) Identification of putative cytoplasmic donor of a CMS system in Brassica juncea. Plant Breed 106:204–208

    Article  Google Scholar 

  • Prakash S, Chopra VL (1990) Male sterility caused by cytoplasm of Brassica oxyrrhina in B. campestris and B. juncea. Theor Appl Genet 79:285–287

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Kirti PB, Bhat SR, Gaikwad K, Kumar VD, Chopra VL (1998) A Moricandia arvensis based cytoplasmic male sterility and fertility restoration system in Brassica juncea. Theor Appl Genet 97:488–492

    Article  CAS  Google Scholar 

  • Prakash S, Ahuja I, Upreti C, Kumar VD, Bhat SR, Kirti PB, Chopra VL (2001) Expression of male sterility in alloplasmic Brassica juncea with Erucastrum canariense cytoplasm and the development of a fertility restoration system. Plant Breed 120:479–482

    Article  Google Scholar 

  • Rao GU, Batra-Sarup V, Prakash S, Shivanna KR (1994) Development of a new cytoplasmic male sterility system in Brassica juncea through wide hybridization. Plant Breed 112:171–174

    Article  Google Scholar 

  • Röbbelen, G (1991) Rapeseed in a changing world: Plant production potential. In: GCIRC (ed) Proceedings of the 8th International Rapeseed Congress, Saskatoon, Canada, 9–11 July, pp 29–38

  • Sabar M, Gagliardi D, Balk J, Leaver CJ (2003) ORFB is a subunit of F1F0-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. EMBO Rep 4:1–6

    Article  Google Scholar 

  • Schnable PS, Wise RP (1994) Recovery of heritable, transposon-induced, mutant alleles of the rf2 nuclear restorer of T-cytoplasm maize. Genetics 136:1171–1185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiga T, Baba S (1971) Cytoplasmic male sterility in rape plants (Brassica napus L.). Jpn J Breed 21:16–17

    Google Scholar 

  • Shiga T, Baba S (1973) Cytoplasmic male sterility in oilseed rape (Brassica napus L.) and its utilization to breeding. Jpn J Breed 23:187–197

    Article  Google Scholar 

  • Sodhi YSA, Chandra A, Verm AK, Arumugam N, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (2006) A new cytoplasmic male sterility system for hybrid seed production in Indian oilseed mustard Brassica juncea. Theor Appl Genet 114:93–99

    Article  CAS  PubMed  Google Scholar 

  • Stiewe G, Röbbelen G (1994) Establishing cytoplasmic male sterility in Brassica napus by mitochondrial recombination with B. tournefortii. Plant Breed 113:294–304

    Article  CAS  Google Scholar 

  • Tang HV, Pring DR, Shaw LC, Salazar RA, Muza FR, Yan B, Schertz KF (1996) Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile sorghum. Plant J 10:123–133

    Article  CAS  PubMed  Google Scholar 

  • Tang HV, Chen W, Pring DR (1999) Mitochondrial orf107 transcription, editing, and nucleolytic cleavage conferred by the gene Rf3 are expressed in sorghum pollen. Sex Plant Reprod 12:53–59

    Article  CAS  Google Scholar 

  • Thompson KF (1972) Cytoplasmic male sterility in oil-seed rape plants. Heredity 29:253–257

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, Chen X, Tianying L, Li H, Song W (2006) Cloning and transcript analyses of the chimeric gene associated with cytoplasmic male sterility in cauliflower (Brassica oleracea var. botrytis). Euphytica 151:111–119

    Article  CAS  Google Scholar 

  • Yang GS, Fu TD, Brown GG (1998) The genetic classification of cytoplasmic male sterility systems in Brassica napus L. Sci Agric Sin 31:27–31

    CAS  Google Scholar 

  • Young EG, Hanson MR (1987) A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 55:41–49

    Article  Google Scholar 

  • Yu FQ, Fu TD (1988) Cytological study on anther development of several varieties of Brassica napus L. Chin J Oil Crop Sci 4:23–25

    CAS  Google Scholar 

  • Zabala G, Laughnan SG, Laughnan JR (1997) The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147:847–860

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Victor Wutor, Lethbridge Research Center, Agri. Food Canada and Marc Janssens, University of Bonn, Germany for technical review of the manuscript. We are also indebted to Doug Walker, Vince D’Antonio, University of California at Davis for maintaining plant material in the greenhouse and Yasir Khan for his valuable help in formatting this manuscript. We are grateful to two anonymous reviewers for their technical input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raham Sher Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R., Khan, R.S. & Farhatullah Transcript analyses of the gene associated with CMS in Brassica napus . Euphytica 200, 455–463 (2014). https://doi.org/10.1007/s10681-014-1195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1195-0

Keywords

Navigation