Skip to main content
Log in

Mapping the BrPur gene for purple leaf color on linkage group A03 of Brassica rapa

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The purple-leaf phenotype in Chinese cabbage is due to the accumulation of anthocyanin. To investigate the pattern of inheritance of this trait in Brassica rapa, F1, F2 and backcross (BC) populations were constructed by crossing 09N-742, a pak-choi inbred line that has purple leaves, with a green-leaved Chinese cabbage inbred line, 09-680. Using a segregating F2 population, we identified a single dominant gene, BrPur, for purple leaf, and mapped the gene to a locus on linkage group A03 of B. rapa. Furthermore, sequences from BAC clones and other sources were used to develop molecular marker loci that are tightly linked to BrPur by using a BC1 population of 1,152 individuals. BrPur was assigned to a locus between Indel markers BVRCPI613 and BVRCPI431, which defined a genetic interval of 0.6 cM and a genomic region of 54.87 kb. Sequence analysis of this chromosomal region revealed seven open reading frames. These results provide a foundation for map-based cloning, identification, and functional analysis of the BrPur gene in B. rapa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bloor SJ, Abrahams S (2002) The structure of the major anthocyanin in Arabidopsis thaliana. Phytochem 59:343–346

    Article  CAS  Google Scholar 

  • Burdzinski C, Wendell DL (2007) Mapping the anthocyaninless (anl) locus in rapid-cycling Brassica rapa (RBr) to linkage group R9. BMC Genet 8:64

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaim A, Borovsky Y, De Jong W et al (2007) Linkage of the A locus for the presence of anthocyanin and fs 10.1, a major fruit-shape QTL in pepper. Theor Appl Genet 106:889–894

    Google Scholar 

  • Charron CS, Clevidence BA, Britz SJ et al (2007) Effect of dose size on bioavailability of acylated and nonacylated anthocyanins from red cabbage (Brassica oleracea L. var. capitata). J Agric Food Chem 55:5354–5362

    Article  CAS  PubMed  Google Scholar 

  • Cheng GW, Breen PJ (1991) Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hort Sci 116:65–869

    Google Scholar 

  • Chiu LW, Zhou X, Burke S et al (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154:1470–1480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi SR, Teakle GR, Plaha P et al (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  CAS  PubMed  Google Scholar 

  • De Pascual-Teresa S, Sanchez-Ballesta MT (2008) Anthocyanins: from plant to health. Phytochem Rev 7:281–299

    Article  Google Scholar 

  • Dobrovolskaya O, Arbuzova VS, Lohwasser U et al (2006) Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364

    Article  CAS  Google Scholar 

  • Dodd IC, Critchley C, Woodall GS et al (1998) Photoinhibition in differently coloured juvenile leaves of Syzygium species. J Exp Bot 49:1437–1445

    Article  CAS  Google Scholar 

  • Hagiwara A, Yoshino H, Ichihara T et al (2002) Prevention by natural food anthocyanins, purple sweet potato color and red cabbage color, of 2-amino-1-methyl-6-phenylimidazo[4, 5-B] pyridine (phip)-associated colorectal carcinogenesis in rats. J Toxicol Sci 27:57–68

    Article  CAS  PubMed  Google Scholar 

  • Hale KL, McGrath SP, Lombi E et al (2001) Molybdenum sequestration in Brassica species. A role for anthocyanins. Plant Physiol 126:1391–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hale KL, Tufan HA, Pickering IJ et al (2002) Anthocyanins facilitate tungsten accumulation in Brassica. Physiol Plant 116:351–358

    Article  CAS  Google Scholar 

  • Hassan HA, Abdel-Aziz AF (2010) Evaluation of free radical-scavenging and anti-oxidant properties of black berry against fluoride toxicity in rats. Food Chem Toxicol 48:1999–2004

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Matsumoto S, Tsukazaki H et al (2010) Mapping of a novel locus regulating anthocyanin pigmentation in Brassica rapa. Breed Sci 60:76–80

    Article  CAS  Google Scholar 

  • Hudson EA, Dinh PA, Kokubun T et al (2000) Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomark Prev 9:1163–1170

    CAS  Google Scholar 

  • Khlestkina EK, Pestsova EG, Röder MS et al (2002) Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor Appl Genet 104:632–637

    Article  CAS  PubMed  Google Scholar 

  • Khlestkina EK, Röder MS, Börner A (2010) Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica 171:65–69

    Article  CAS  Google Scholar 

  • Klaper R, Frankel S, Berenbaum MR (1996) Anthocyanin content and UVB sensitivity in Brassica rapa. Photochem Photobiol 63:811–813

    Article  CAS  Google Scholar 

  • Kosambi D (1943) The estimation of map distances from recombination values. Ann Hum Genet 12:172–175

    Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dai X, Cheng Y et al (2011) NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol Plant 4:171–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Deng Z, Zhu H et al (2012) Highly pigmented vegetables: anthocyanin compositions and their role in antioxidant activities. Food Res Int 46:250–259

    Article  CAS  Google Scholar 

  • Michelmore R W, Paran I, Kesseli R V (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. P Natl Acad Sci 88(21):9828–9832

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson JC, Sorrels ME, Van Deynze AE et al (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5 and 7. Genetics 141:721–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohto M, Hayashi S, Sawa S et al (2006) Involvement of HLS1 in sugar and auxin signaling in Arabidopsis leaves. Plant Cell Physiol 47:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Olsson ME, Gustavsson KE, Andersson S et al (2004) Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J Agric Food Chem 52:7264–7271

    Article  CAS  PubMed  Google Scholar 

  • Otsuki T, Matsufuji H, Takeda M et al (2002) Acylated anthocyanins from red radish (Raphanus sativus L.). Phytochemistry 60:79–87

    Article  CAS  PubMed  Google Scholar 

  • Pizzocaro F, Ferrari V, Acciarri N et al (2000) Antioxidant and antiradical activities in green and violet cauliflower ecotypes with different maturity stages[C]//workshop of VI giornate scientifiche SOI. Sirmione 28:34–35

    Google Scholar 

  • Rubin G, Tohge T, Matsuda F et al (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Univ Missouri Agric Exp Station Research Bull 572:59

    Google Scholar 

  • Sun R, Zhang S, Zhang S et al (2006) Research on creation of purple Chinese cabbage germplasm. Acta Hort Sin 33:1032 (in chinese)

    Google Scholar 

  • Suwabe K, Iketani H, Nunome T et al (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Van Oijen JW, Voorrips RE (2001) Joinmap version 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun S, Liu B et al (2011) A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly. BMC Genom 12:239

    Article  Google Scholar 

  • Wu X, Prior RL (2005) Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem 53:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Yi W, Akoh CC, Fischer J et al (2006) Absorption of anthocyanins from blueberry extracts by caco-2 human intestinal cell monolayers. J Agric Food Chem 54:5651–5658

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Chiu LW, Li L (2009) Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta 230:1141–1153

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhang L, Gong Z et al (2008) Screening RAPD markers linked to purple trait of Chinese cabbage and its chromosome location. Acta Botanica Boreali-Occidentalia Sinica 5:009 (in chinese)

    Google Scholar 

  • Zhang D, Wang W, Zhang F et al (2011) Genetic relationship between Chinese cabbage with orange color in inner head and purple color in leaf. China Veg 18:007

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants from the National High Technology Research and Development Program of China (973,863 Program) (2012CB113906, 2012AA100105), Beijing Natural Science Foundation (6132010), the National Science and Technology Foundation (2012BAD50G01), the earmarked fund for Modern Agro-industry Technology Research System (CARS-25-A-11), and the Advanced Program of Science and Technology Activities of Overseas Personnel in Beijing City of 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglan Zhang.

Additional information

Deshuang Zhang and Weihong Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, D., Yu, S. et al. Mapping the BrPur gene for purple leaf color on linkage group A03 of Brassica rapa . Euphytica 199, 293–302 (2014). https://doi.org/10.1007/s10681-014-1128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1128-y

Keywords

Navigation