Skip to main content
Log in

Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Frontana-derived wheat population

  • Published:
Euphytica Aims and scope Submit manuscript

An Erratum to this article was published on 19 August 2014

Abstract

The genetic background of Fusarium head blight (FHB) resistance in the moderately resistant wheat variety Frontana was investigated in the GK Mini Manó/Frontana DH population (n = 168). The plant material was evaluated across seven epidemic environments for FHB, Fusarium-damaged kernel (FDK) and deoxynivalenol (DON) contents caused by two Fusarium species (F. culmorum and F. graminearum). The effects of phenotypic traits such as plant height and heading date were also considered in the experiments. In the population, 527 polymorph markers (DArT, SSR) within a distance of 1,381 cM distance were mapped. The quantitative trait locus/loci (QTL) on chromosomes 4A and 4B demonstrated a significant linkage only with FHB, while QTL on chromosomes 3A, 4B, 7A and 7B were linked to DON accumulation alone. Regions determining all the investigated Fusarium resistance traits were identified on chromosomes 1B, 2D, 3B, 5A, 5B and 6B. The markers in these regions are of the greatest significance from the aspect of resistance breeding. Our results indicate that the genetic background of resistance against FHB, FDK and DON accumulation can differ, and all these traits should be taken under consideration during resistance tests. Moreover, this is the first report on the mapping of Frontana-derived QTL that influence DON accumulation, which is important since the level of DON contamination determines the actions of the food and feed industries. Selection should therefore also focus on this trait by using molecular markers linked to DON content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Berzonsky WA, Gebhard BL, Gamotin E, Leach GD, Ali S (2007) A reciprocal backcross monosomic analysis of the scab resistant spring wheat (Triticum aestivum L.) cultivar, ‘Frontana’. Plant Breeding 126:234–239

    Article  CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding 128:1–26

    Article  CAS  Google Scholar 

  • Cuthbert PA, Somers DJ, Brulé-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429–437

    Article  PubMed  CAS  Google Scholar 

  • Detering F, Huttner E, Wenzl P, Kilian A (2010) A consensus genetic map of wheat: ordering the 6,000 wheat DArT markers. In: Proceedings of the 20th ITMI Meeting, 1–5 September 2010, Beijing

  • Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–625

    Article  PubMed  CAS  Google Scholar 

  • Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111:423–430

    Article  PubMed  CAS  Google Scholar 

  • Flood RG, Halloran GM (1983) The influence of certain chromosomes of the hexaploid wheat cultivar Thatcher on time to ear emergence in Chinese Spring. Euphytica 32:121–124

    Article  Google Scholar 

  • Gervais L, Dedryver F, Morlais J-Y, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    PubMed  CAS  Google Scholar 

  • Handa H, Namiki N, Xu D, Ban T (2008) Dissecting of the FHB resistance QTL on the short arm of wheat chromosome 2D using a comparative genomic approach: from QTL to candidate gene. Mol Breed 27:71–84

    Article  Google Scholar 

  • Heidari B, Saeidi G, Sayed Tabatabaei BE, Suenaga K (2012) QTLs involved in plant height, peduncle length and heading date of wheat (Triticum aestivum L.). J Agr Sci Tech 14:1093–1104

    Google Scholar 

  • Jiang G-L, Dong Y, Shi J, Ward RW (2007) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet 115:1043–1052

    Article  PubMed  Google Scholar 

  • Klahr A, Zimmermann G, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17–28

    Article  CAS  Google Scholar 

  • Kosová K, Chrpová J, Šíp V (2009) Cereal resistance to Fusarium head blight and possibilities of its improvement through breeding. Czech J Genet Plant Breed 45:87–105

    Google Scholar 

  • Lantos C, Weyen J, Orsini JM, Gnad H, Schleter B, Lein V, Kontowski S, Jacobi A, Mihály R, Broughton S, Pauk J (2013) Efficient application of in vitro anther culture for different European winter wheat (Triticum aestivum L.) breeding programs. Plant Breed 132:149–154

    Article  Google Scholar 

  • Law CN, Sutka J, Worland AJ (1978) A genetic study of day-length response in wheat. Heredity 41:185–191

    Article  Google Scholar 

  • Lin F, Xue SL, Tian DG, Li CJ, Cao Y, Zhang ZZ, Zhang CQ, Ma ZQ (2008) Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica 164:769–777

    Article  Google Scholar 

  • Ma ZQ, Xue SL, Lin F, Yang SH, Li GQ, Tang MZ, Kong ZX, Cao Y, Zhao DM, Jia HY, Zhang ZZ, Zhang LX (2008) Mapping and validation of scab resistance QTLs in the Nanda2419 × Wangshuibai population. Cereal Res Commun 36(Suppl B):245–251

    Article  Google Scholar 

  • Mao S-L, Wei Y-M, Cao W, Lan X-J, Yu M, Chen Z-M, Chen G-Y, Zheng Y-L (2010) Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 174:343–356

    Article  Google Scholar 

  • Mardi M, Pazouki L, Delavar H, Kazemi MB, Ghareyazie B, Steiner B, Nolz R, Lemmens M, Buerstmayr H (2006) QTL analysis of resistance to Fusarium head blight in wheat using a ‘Frontana’-derived population. Plant Breed 125:313–317

    Article  Google Scholar 

  • McCartney CA, Somers DJ, Fedak G, Cao W (2004) Haplotype diversity at fusarium head blight resistance QTLs in wheat. Theor Appl Genet 109:261–271

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2010) Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  • Mesterházy Á (1985) Effect of seed production area on the seedling resistance of wheat to Fusarium seedling blight. Agronomie 5:491–497

    Article  Google Scholar 

  • Mesterházy Á (1987) Selection of head blight resistant wheats through improved seedling resistance. Plant Breed 98:25–36

    Article  Google Scholar 

  • Mesterházy Á (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breeding 114:377–386

    Article  Google Scholar 

  • Mesterházy Á (2002) Theory and practice of the breeding for Fusarium head blight resistance in wheat. J Appl Genet 43A:289–302

    Google Scholar 

  • Mesterházy Á, Bartók T, Mirocha CG, Komoróczy R (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed 118:97–110

    Article  Google Scholar 

  • Mesterházy Á, Bartók T, Kászonyi G, Varga M, Tóth B, Varga J (2005) Common resistance to different Fusarium spp. causing Fusarium head blight in wheat. Eur J Plant Pathol 112:267–281

    Article  Google Scholar 

  • Miller JD, Arnison PG (1986) Degradation of deoxynivalenol by suspension cultures of the fusarium head blight resistant wheat cultivar Frontana. Can J Plant Pathol 8:147–150

    Article  CAS  Google Scholar 

  • Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, Schachermayr G (2004) QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.). Theor Appl Genet 109:323–332

    Article  PubMed  CAS  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Pauk J, Mihály R, Puolimatka M (2003) Protocol of wheat (Triticum aestivum L.) anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled Haploid Production in Crop Plants, a manual. Kluwer Academic Publishers, Dordrecht, pp 59–64

    Chapter  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  PubMed  CAS  Google Scholar 

  • Ruckenbauer P, Buerstmayr H, Lemmens M (2001) Present strategies in resistance breeding against scab (Fusarium spp.). Euphytica 119:121–127

    Article  Google Scholar 

  • Scarth R, Law CN (1983) The location of the photoperiod gene, Ppd2 and an additional genetic factor for ear-emergence time on chromosome 2B of wheat. Heredity 51:607–619

    Article  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–756

    Article  PubMed  CAS  Google Scholar 

  • Schmolke M, Zimmermann G, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2008) Molecular mapping of quantitative trait loci for field resistance to Fusarium head blight in a European winter wheat population. Plant Breed 127:459–464

    Article  Google Scholar 

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  • Semagn K, Bjørnstad Å, Skinnes H, Marøy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Ma H, Rajaram S (1995) Genetic analysis of resistance to scab in spring wheat cultivar Frontana. Plant Dis 79:238–240

    Article  Google Scholar 

  • Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555–564

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Srinivasachary Gosman N, Steed A, Faure S, Bayles R, Jennings P, Nicholson P (2008) Mapping of QTL associated with Fusarium head blight in spring wheat RL4137. Czech J Genet Plant 44:147–159

    Google Scholar 

  • Srinivasachary Gosman N, Steed A, Hollins TW, Bayles R, Jennings P, Nicholson P (2009) Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 118:695–702

    Article  PubMed  CAS  Google Scholar 

  • Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109:215–224

    Article  PubMed  CAS  Google Scholar 

  • Szabó-Hevér Á, Lehoczki-Krsjak S, Tóth B, Purnhauser L, Buerstmayr H, Steiner B, Mesterházy Á (2012) Identification and validation of fusarium head blight and Fusarium-damaged kernel QTL in a Frontana/Remus DH mapping population. Can J Plant Pathol 34:224–238

    Article  Google Scholar 

  • Tóth B, Kászonyi G, Bartók T, Varga J, Mesterházy Á (2008) Common resistance of wheat to members of the Fusarium graminearum species complex and F. culmorum. Plant Breed 127:1–8

    Article  Google Scholar 

  • Van Eeuwijk FA, Mesterhazy A, Kling CHI, Ruckenbauer P, Saur L, Bürstmayr H, Lemmens M, Keizer LCP, Maurin N, Snijders CHA (1995) Assessing non-specificity of resistance in wheat to head blight caused by inoculation with European strains of Fusarium culmorum, F. graminearum, and F. nivale using a multiplicative model for interaction. Theor Appl Genet 90:221–228

    Article  PubMed  Google Scholar 

  • Van Ginkel M, Van Der Schaar W, Zhuping Y, Rajaram S (1996) Inheritance of resistance to scab in two wheat cultivars from Brazil and China. Plant Dis 80:863–867

    Article  Google Scholar 

  • Van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2004) MapQTL Version 5: software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Plant Research International, Wageningen

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap Version 3.0: Software for the calculation of genetic linkage maps. Kyazma BV, Plant Research International, Wageningen

    Google Scholar 

  • Wang YZ, Miller JD (1988) Effects of Fusarium graminearum metabolites on wheat tissue in relation to Fusarium head blight resistance. J Phytopathol 122:118–125

    Article  CAS  Google Scholar 

  • Weber E (1972) Grundriss der biologischen Statistik. VEB Gustav Fischer, Jena

    Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang ZP, Gilbert J, Procunier JD (2006) Genetic diversity of resistance genes controlling fusarium head blight with simple sequence repeat markers in thirty-six wheat accessions from east asian origin. Euphytica 148:345–352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was realized in the frames of TÁMOP 4.2.4. A/1-11-1-2012-0001, National Excellence Program—Elaborating and operating an inland student and researcher personal support system . The project was subsidized by the European Union and co-financed by the European Social Fund. The research was also funded by the MycoRed FP7 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szabó-Hevér Ágnes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 133 kb)

Supplementary material 2 (DOC 226 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ágnes, SH., Szabolcs, LK., Mónika, V. et al. Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Frontana-derived wheat population. Euphytica 200, 9–26 (2014). https://doi.org/10.1007/s10681-014-1124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1124-2

Keywords

Navigation