Skip to main content

Advertisement

Log in

Global estimates of soil carbon sequestration via livestock waste: a STELLA simulation

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

It has become increasingly well documented that human activities are enhancing the greenhouse effect and altering the global climate. Identifying strategies to mitigate atmospheric carbon dioxide emissions on the national level are therefore critical. Fossil fuel combustion is primarily responsible for the perturbation of the global carbon cycle, although the influence of humans extends far beyond the combustion of fossil fuels. Changes in land use arising from human activities contribute substantially to atmospheric carbon dioxide; however, land use changes can act as a carbon dioxide sink as well. A soil carbon model was built using STELLA to explore how soil organic carbon sequestration (SOC) varies over a range of values for key parameters and to estimate the amount of global soil carbon sequestration from livestock waste. To obtain soil carbon sequestration estimates, model simulations occurred for 11 different livestock types and with data for eight regions around the world. The model predicted that between 1980 and 1995, United States soils were responsible for the sequestration of 444–602 Tg C from livestock waste. Model simulations further predicted that during the same period, global soil carbon sequestration from livestock waste was 2,810–4,218 Tg C. Our estimates for global SOC sequestration are modest in proportion to other terrestrial carbon sinks (i.e. forest regrowth); however, livestock waste does represent a potential for long-term soil carbon gain. SOC generated from livestock waste is another example of how human activities and land use changes are altering soil processes around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • American Society of Agricultural Engineers. (1977). Manure production and characteristics, ASAE Yearbook D, St. Joseph, MI. p. 384.

  • Batjes, N. H. (2004). Estimation of soil carbon gains upon improved management within croplands and grasslands of Africa. Environment, Development and Sustainability, 6, 133–143. doi:10.1023/B:ENVI.0000003633.14591.fd.

    Article  Google Scholar 

  • Benne, E. J., Hoglund, C. R., Longnecher, E. D., & Cook, R. L. (1961). Animal manures—what are they worth today? Michigan State University Agriculture Experiment Station Circle Bulletein, 231, 15.

    Google Scholar 

  • Bernal, M. P., Sanchez-Monedero, M. A., Paredes, C., & Roig, A. (1998). Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agriculture Ecosystems & Environment, 69, 175–189. doi:10.1016/S0167-8809(98)00106-6.

    Article  CAS  Google Scholar 

  • Broeker, W. S., Takahashi, T., Simpson, H. J., & Peng, T. H. (1979). Fate of fossil fuel carbon dioxide and the global carbon budget. Science, 206, 409–418. doi:10.1126/science.206.4417.409.

    Article  Google Scholar 

  • Changsheng, L., Frolking, S., & Harris, R. (1994). Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 8, 237–254. doi:10.1029/94GB00767.

    Article  Google Scholar 

  • Conant, R. T., Paustian, K., & Elliot, E. T. (2001). Grassland management and conversion into grassland: Effects of soil carbon. Ecological Applications, 11(2), 343–355. doi:10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2.

    Article  Google Scholar 

  • Correll, D. L., Jordan, T. E., & Weller, D. E. (1995). Animal waste and the land-water interface. New York, NY: Lewis Publishers.

    Google Scholar 

  • Costanza, R., Duplisea, D., & Kautsky, U. (1998). Ecological modelling and economic systems with STELLA. Ecological Modelling, 110, 1–4. doi:10.1016/S0304-3800(98)00099-4.

    Article  Google Scholar 

  • Delgado, C. L., Courbois, C. B., & Rosegrant, M. W. (1998). Global food demand and the contribution of livestock as we enter the new millennium. Washington, DC: International Food Policy Research Institute.

  • Dumanski, J. (2004). Carbon sequestration, soil conservation, and the Kyoto Protocol: summary of implications. Climatic Change, 65, 255–261. doi:10.1023/B:CLIM.0000038210.66057.61.

    Article  CAS  Google Scholar 

  • Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T., et al. (1998). A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 282, 442–446. doi:10.1126/science.282.5388.442.

    Article  CAS  Google Scholar 

  • Fellman, J. B. (2000). Simulation of soil carbon sequestration via livestock waste. MS thesis, Env. Science and Regional Planning Program. Pullman, WA: Washington State University.

  • Gao, G., & Chang, C. (1996). Changes in CEC and particle size distribution of soils associated with long-term annual applications of cattle feedlot manure. Soil Science, 161(2), 115–120. doi:10.1097/00010694-199602000-00006.

    Article  CAS  Google Scholar 

  • Gilmour, C. M., Broadbent, F. E., & Beck, S. M. (1977). Soils for management of organic wastes and waste waters. Madison, WI: American Society of Agronomy, Inc.

    Google Scholar 

  • Golueke, C. G. (1972). Composting: A study of the process and its principles. Emmaus: Rodale Press.

    Google Scholar 

  • Houghton, R. A. (2003). Why are estimates of the terrestrial carbon cycle balance so different? Global Change Biology, 9, 500–509. doi:10.1046/j.1365-2486.2003.00620.x.

    Article  Google Scholar 

  • Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Melillo, J. M., Palm, C. A., et al. (1987). The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: Geographic distribution of the global flux. Tellus Series B, 39, 122–139.

    Article  Google Scholar 

  • Houghton, R. A., Davidson, E. A., & Woodwell, G. M. (1998). Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon budget. Global Biogeochemical Cycles, 12, 25–34. doi:10.1029/97GB02729.

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). (1997). IPCC guidelines for national greenhouse gas inventories: reference manual.

  • Jenkinson, D. S. (1991). The Rothamsted long-term experiments: Are they still of use. Agronomy Journal, 83, 2–10.

    Google Scholar 

  • Jenkinson, D. S., & Rayner, J. H. (1977). The turnover of soil organic carbon matter in some of the Rothamsted classical experiments. Soil Science, 123(5), 298–305. doi:10.1097/00010694-197705000-00005.

    Article  CAS  Google Scholar 

  • Joos, F., Meyer, R., Bruno, M., & Leuenberger, M. (1999). The variability in the carbon sinks as reconstructed for the last 1000 years. Geophysical Research Letters, 26, 1437–1440. doi:10.1029/1999GL900250.

    Article  CAS  Google Scholar 

  • Liang, B. C., Gregorich, E. G., & MacKenzie, A. F. (1996). Modeling the effects of inorganic and organic amendments on organic matter in a Quebec soil. Soil Science, 161(2), 109–114. doi:10.1097/00010694-199602000-00005.

    Article  CAS  Google Scholar 

  • Loehr, R. C. (1974). Agricultural waste management: Problems, processes and approaches. New York, NY: Academic Press.

    Google Scholar 

  • Loehr, R. C. (1984). Pollution control for agriculture. New York, NY: Academic Press, Inc.

    Google Scholar 

  • Massari, S. (2003). Current food consumption patterns and global sustainability. Discussion paper presented at the United Nations Environmental Program Sustainable Agri-Food Production and Consumption Forum.

  • Merkel, J. A. (1981). Managing livestock waste. Westport, Connecticut: The AVI Publishing Company, Inc.

  • NCSU (North Carolina State University). (1990). Livestock waste characteristics. Raleigh, North Carolina: Biology and Agricultural Engineering Department.

  • Nyakatawa, E. Z., Reddy, K. C., & Sistani, K. R. (2001). Tillage, cover cropping, and poultry litter effects on selected soil chemical properties. Soil & Tillage Research, 58, 69–79. doi:10.1016/S0167-1987(00)00183-5.

    Article  Google Scholar 

  • Ogle, S. M., Breidt, F. J., Eve, M. D., & Paustian, K. (2003). Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997. Global Change Biology, 9, 1521–1542. doi:10.1046/j.1365-2486.2003.00683.x.

    Article  Google Scholar 

  • Pacala, S., & Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305, 968–972. doi:10.1126/science.1100103.

    Article  CAS  Google Scholar 

  • Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Science Society of America Journal, 51, 1173–1179.

    CAS  Google Scholar 

  • Pimentel, D., & Pimentel, M. (2003). Sustainability of meat-based and plant-based diets and the environment. The American Journal of Clinical Nutrition, 78(suppl), 660s–663s.

    CAS  Google Scholar 

  • Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology, 6, 317–327. doi:10.1046/j.1365-2486.2000.00308.x.

    Article  Google Scholar 

  • Robertson, G. P., Paul, E. A., & Harwood, R. R. (1999). Greenhouse gases in intensive agriculture: Contributions of individual gases to radiative forcing of the atmosphere. Science, 289, 1922–1925. doi:10.1126/science.289.5486.1922.

    Article  Google Scholar 

  • Safley, L. M., Casada, M. E., Woodbury, J. W., & Roos, K. F. (1992). Global methane emissions from livestock and poultry manure. U.S. Env. Protection Agency, EPA/400/1-91/048.

  • Schlesinger, W. H. (1997). Biogeochemistry: An analysis of global change (pp. 155–160). London: Academic Press.

    Google Scholar 

  • Schlesinger, W. H. (1999). Carbon and agriculture: Carbon sequestration in soils. Science, 284, 2095. doi:10.1126/science.284.5423.2095.

    Article  CAS  Google Scholar 

  • Schuman, G. E., Reeder, J. D., Manley, J. T., Hart, R. H., & Manley, W. A. (1999). Impact of grazing management on the carbon and nitrogen balance of a mixed-grassland rangeland. Ecological Applications, 9(1), 65–71. doi:10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2.

    Article  Google Scholar 

  • Singh, B. R., & Lal, R. (2005). The potential of soil carbon sequestration through improved management practices in Norway. Environment Development and Sustainability, 7, 161–184. doi:10.1007/s10668-003-6372-6.

    Article  Google Scholar 

  • Smith, L. W. (1973). Symposium: Processing agricultural and municipal wastes. Westport, Connecticut: Avi. Publishing Company, Inc.

    Google Scholar 

  • Smith, P., & Powlson, D. S. (2000). Considering manure and carbon sequestration. Science, 287, 428–429. doi:10.1126/science.287.5450.54.

    Article  CAS  Google Scholar 

  • Smith, P., Powlson, D. S., Glendining, M. J., & Smith, J. U. (1997). Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Global Change Biology, 3, 67–79. doi:10.1046/j.1365-2486.1997.00055.x.

    Article  Google Scholar 

  • Smith, P., Powlson, D. S., Smith, J. U., Falloon, P., & Coleman, K. (2000). Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology, 6, 525–539. doi:10.1046/j.1365-2486.2000.00331.x.

    Article  Google Scholar 

  • Smith, P., & Smith, T. J. F. (2000). Transport carbon costs do not negate the benefits of agricultural carbon mitigation options. Ecology Letters, 3, 379–381. doi:10.1046/j.1461-0248.2000.00176.x.

    Article  Google Scholar 

  • Sommerfeldt, T. G., & Chang, C. (1987). Soil water properties as affected by twelve annual applications of feedlot manure and different tillage practices. Soil Science Society of America Journal, 51, 7–9.

    Google Scholar 

  • Sommerfeldt, T. G., Chang, C., & Entz, T. (1988). Long-term annual manure applications increase soil organic matter and nitrogen, and decrease carbon to nitrogen ratio. Soil Science Society of America Journal, 52, 1668–1672.

    Google Scholar 

  • Tans, P. P., Fung, I. Y., & Takahashi, T. (1990). Observational constraints on the global atmospheric carbon dioxide budget. Science, 247, 1431–1438. doi:10.1126/science.247.4949.1431.

    Article  CAS  Google Scholar 

  • USDA. (1930–2005). Agricultural statistics 1930–2005, United States Department of Agriculture, U.S. Government Printing Office, Washington D.C., 20402.

  • Wackernagel, M., Schulz, N. B., Deumling, D., Linares, A. C., Jenkins, M., Kapos, V., et al. (2002). Tracking the ecological overshoot of the human economy. Proceedings of the National Academy of Sciences of the United States of America, 99, 9266–9271. doi:10.1073/pnas.142033699.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kent Keller and Andy Ford for their guidance and insightful comments on an earlier draft of this manuscript. This research was partially supported by a Lane Fellowship in Environmental Science and Regional Planning, Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason B. Fellman.

Additional information

Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.

Appendix A

Appendix A

Countries included in this study and considered climatic exceptions. Information on temperature and available moisture factors was obtained from Safley et al. (1992)

North America

Canadaa

United States

Western Europe

Austria

Belgium

Denmark

Finlanda

France

West Germany

Greece

Ireland

Italy

Netherlands

Norwaya

Portugal

Spain

Swedena

Switzerland

UK

East Europe

Albania

Bulgaria

Czechoslovakiaa

East Germany

Hungarya

Polanda

Romaniaa

Soviet Uniona

Yugoslavia

Oceania

Australiab

Fiji

New Caledonia

New Zealand

P. New Guinea

Vanuatu

Africa

Angola

Benin

Botswanab

Burkina Fasob

Burundi

Cameroon

Central African Republic

Chadb

Cote d’lvore

Ethiopiab

The Ghambia

Ghana

Guinea

Guinea-Bissau

Kenyab

Lesotho

Madagascar

Malawi

Malib

Mauritaniab

Mozambique

Namibiab

Nigerb

Nigeria

Rwanda

Senegal

Sierra Leone

Somaliab

South Africab

Swaziland

Tanzania

Togo

Uganda

Zaire

Zambia

Zimbabwe

Latin America

Argentina

Bolivia

Brazil

Chile

Columbia

Costa Rica

Cuba

Dominican Republic

Ecuador

El Salvador

Guatemala

Guyana

Haiti

Honduras

Jamaica

Mexico

Nicaragua

Panama

Paraguay

Peru

Puerto Rico

Uruguay

Venezuela

Near East & Mediterranean

Afghanistanb

Algeriab

Egyptb

Iranb

Iraqb

Israel

Jordanb

Kuwait

Libyab

Morocco

Omanb

Saudi Arabiab

Sudanb

Syriab

Tunisiab

Turkey

Yemen Arab Republicb

Asia & Far East

Bangladesh

Bhutan

Burma

China

India

Indonesia

Japan

Kampuchea

North Korea

South Korea

Laos

Malaysia

Mongoliab

Nepal

Pakistanb

Philippines

Sri Lanka

Thailand

Vietnam

a Countries considered climatic exceptions (cold)

b Countries considered climatic exceptions (arid/semiarid)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellman, J.B., Franz, E.H., Crenshaw, C.L. et al. Global estimates of soil carbon sequestration via livestock waste: a STELLA simulation. Environ Dev Sustain 11, 871–885 (2009). https://doi.org/10.1007/s10668-008-9157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-008-9157-0

Keywords

Navigation