Skip to main content
Log in

Accessing indoor fungal contamination using conventional and molecular methods in Portuguese poultries

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers, corroborating the increased exposure to risk factors, such as fungal load and their metabolites. This study aimed to determine the occupational exposure threat due to fungal contamination caused by the toxigenic isolates belonging to the complex of the species of Aspergillus flavus and also isolates from Aspergillus fumigatus species complex. The study was carried out in seven Portuguese poultries, using cultural and molecular methodologies. For conventional/cultural methods, air, surfaces, and litter samples were collected by impaction method using the Millipore Air Sampler. For the molecular analysis, air samples were collected by impinger method using the Coriolis μ air sampler. After DNA extraction, samples were analyzed by real-time PCR using specific primers and probes for toxigenic strains of the Aspergillus flavus complex and for detection of isolates from Aspergillus fumigatus complex. Through conventional methods, and among the Aspergillus genus, different prevalences were detected regarding the presence of Aspergillus flavus and Aspergillus fumigatus species complexes, namely: 74.5 versus 1.0 % in the air samples, 24.0 versus 16.0 % in the surfaces, 0 versus 32.6 % in new litter, and 9.9 versus 15.9 % in used litter. Through molecular biology, we were able to detect the presence of aflatoxigenic strains in pavilions in which Aspergillus flavus did not grow in culture. Aspergillus fumigatus was only found in one indoor air sample by conventional methods. Using molecular methodologies, however, Aspergillus fumigatus complex was detected in seven indoor samples from three different poultry units. The characterization of fungal contamination caused by Aspergillus flavus and Aspergillus fumigatus raises the concern of occupational threat not only due to the detected fungal load but also because of the toxigenic potential of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akman, S. A., Adams, M., Case, D., Park, G., & Manderville, R. A. (2012). Mutagenicity of ochratoxin A and its hydroquinone metabolite in the SupF gene of the mutation reporter plasmid Ps189. Toxins (Basel), 4(4):267–80.

    Google Scholar 

  • Amitani, R., Taylor, G., Elezis, E. N., et al. (1995). Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium. Infection and Immunity, 63, 3266–3271.

    CAS  Google Scholar 

  • Bartlett, K., Kennedy, S., & Brauer, M. (2004). Evaluation and a predictive model of airborne fungal concentrations in school classrooms. Annals of Occupational Hygiene, 48(6), 547–554.

    Article  Google Scholar 

  • Bellanger, A. P., Reboux, G., Murat, J. B., Bex, V., & Millon, L. (2010). Detection of Aspergillus fumigatus by quantitative polymerase chain reaction in air samples impacted on low-melt agar. American Journal of Infection Control, 38, 195–198.

    Article  CAS  Google Scholar 

  • Borman, A., (2009). Conventional methods versus molecular biology. 4th Trends in Medical Mycology, Athens.

  • Cary, J. W., & Ehrlich, K. C. (2006). Aflatoxigenicity in Aspergillus: Molecular genetics, hylogenetic relationships and evolutionary implications. Mycopathologia, 162:167–177.

    Google Scholar 

  • Cavaglieri, L.R., González Pereyra, M.L., Pereyra, C.M., Magnoli, C.E., Chulze, S.N. and Dalcero, A.M. (2005). Fungal and mycotoxin contamination of cow feedingstuffs in Argentina. (abstract) In Reducing Impact of Mycotoxins inTropical Agriculture. Congress. Ghana, Africa.

  • Cruz-Perez, P., Buttner, M. P., & Stetzenbach, L. D. (2001). Detection and quantitation of Aspergillus fumigatus in pure culture using polymerase chain reaction. Mol Cell Probes, 15, 81–88.

    Article  CAS  Google Scholar 

  • Dimitrokallis, V., Meimaroglou, D. M., & Markaki, P. (2008). Study of the Ochratoxin A effect on Aspergillus parasiticus growth and aflatoxin B1 production. Food Chem Toxicol, 46(7):2435–9.

    Google Scholar 

  • Denning, D. W. (1998). Invasive aspergillosis. Clinical Infectious Diseases, 26, 781–803.

    Article  CAS  Google Scholar 

  • Donham, K., Haglind, P., Peterson, Y., Rilander, R., & Belin, I. (1989). Environmental and health studies of farm workers in Swedish swine confinement buildings. British Journal of Industrial Medicine, 46, 31–37.

    CAS  Google Scholar 

  • dos Santos, V. M., Dorner, J. W., & Carreira, F. (2003). Isolation and toxigenicity of Aspergillus fumigatus from moldy silage. Mycopathologia, 156, 133–138.

    Article  Google Scholar 

  • Eduard, W., & Halstensen, A. (2009). Quantitative exposure assessment of organic dust. SJWEH, 7, 30–35.

    Google Scholar 

  • El-Shanawany, A. A., Mostafa, M. E., & Barakat, A. (2005). Fungal populations and mycotoxins in silage in Assiut and Sohag governorates in Egypt, with a special reference to characteristic aspergilli toxins. Mycopathologia, 159, 281–289.

    Article  CAS  Google Scholar 

  • Fischer, G., Muller, T., Ostrowski, R., & Dott, W. (1999). Mycotoxins of Aspergillus fumigatus in pure culture and in native bioaerosols from compost facilities. Chemosphere, 38, 1745–1755.

    Article  CAS  Google Scholar 

  • Fulleringer, S. L., Seguin, D., Warin, S., Bezille, A., Desterque, C., Arne, P., et al. (2006). Evolution of the environmental contamination by thermophilic fungi in a Turkey confinement house in France. Poultry Science, 85, 1875–1880.

    CAS  Google Scholar 

  • Hoog, C., Guarro, J., Gené, G., Figueiras, M., (2th ed) (2000). Atlas of Clinical Fungi. Centraalbureau voor Schimmelcultures,.

  • Horner, W. (2003). Assessment of the indoor environment: evaluation of mold growth indoors. Immunology and Allergy Clinics of North America, 23(3), 519–531.

    Article  Google Scholar 

  • Jensen, R., & Arendrup, M. (2012). Molecular diagnosis of dermatophyte infections. Current Opinion in Infectious Diseases, 25(2), 126–134.

    Article  CAS  Google Scholar 

  • Kogevinas, M., Anto, J. M., Sunyer, J., Tobias, A., Kromhout, H., & Burney, P. (1999). Occupational asthma in Europe and other industrialized areas: a population based study. Lancet, 353, 1750–1754.

    Article  CAS  Google Scholar 

  • Kyung, J., Kwon-Chung, & Sugui, J. (2009). What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus? Medical Mycology, 47(Suppl 1), S97–S103.

    Google Scholar 

  • Land, C., Hult, K., Fuchs, R., Hagelberg, S., & Lundstrom, H. (1987). Tremorgenic mycotoxins from Aspergillus fumigatus as a possible occupational health problem in sawmills. Applied and Environmental Microbiology, 193, 262–275.

    Google Scholar 

  • Land, C. J., Sostaric, B., Fuchs, R., Lundstrom, H., & Hult, K. (1989). Intratracheal exposure of rats to Aspergillus fumigatus spores isolated from sawmills in Sweden. Applied and Environmental Microbiology, 55, 2856–2860.

    CAS  Google Scholar 

  • Lee, S., Adhikari, A., Grinshpun, S., McKay, R., Shukla, R., & Reponen, T. (2006). Personal exposure to airborne dust and microorganisms in agricultural environments. Journal of Occupational and Environmental Hygiene, 3, 118–130.

    Article  Google Scholar 

  • Lewis, R., Wiederhold, N., Lionakis, M., Prince, R., & Kontoyiannis, D. (2005). Frequency and species distribution of gliotoxin-producing Aspergillus isolates recovered from patients at a tertiary-care cancer center. Journal of Clinical Microbiology, 2005, 6120–6122.

    Article  Google Scholar 

  • Malta-Vacas, J., Viegas, S., Sabino, R., & Viegas, C. (2012). Fungal and microbial volatile organic compounds exposure assessment in a waste sorting plant. Journal of Toxicology and Environmental Health, Part A, 75, 1410–1417.

    Article  CAS  Google Scholar 

  • Mayer, Z., Bagnara, A., Färber, P., & Geisen, R. (2003). Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic 555 pathway by real-time PCR, and its correlation to the CFU of Aspergillus flavus in foods. International Journal of Food Microbiology, 82, 143–151.

    Article  CAS  Google Scholar 

  • Millner, P. (2009). Bioaerosols associated with animal production operations. Bioresource Technology, 100, 5379–5385.

    Article  CAS  Google Scholar 

  • Novak, D. (1994). Prevalence and risk factors for airway diseases in farmers: a new EC multicentre project. Annals of Agricultural and Environmental Medicine, 1, 81–82.

    Google Scholar 

  • O’Gorman, C. (2011). Airborne Aspergillus fumigatus conidia: a risk factor for aspergillosis. Fungal Biology Reviews, 5, 151–157.

    Article  Google Scholar 

  • Okoth, S., Nyongesa, B., Ayugi, V., Kang'ethe, E., Korhonen, H., & Joutsjoki, V. (2012). Toxigenic potential of Aspergillus species occurring on maize kernels from two agro-ecological zones in Kenya. Toxins (Basel), 4(11):991–1007.

    Google Scholar 

  • Omland, O. (2002). Exposure and respiratory health in farming in temperate zones—a review of the literature. Annals of Agricultural and Environmental Medicine, 9, 119–136.

    Google Scholar 

  • Oppliger, A., Charrie, N., Droz, P., & Rinsoz, T. (2008). Exposure to bioaerosols in poultry houses at different stages of fattening; use of real-time PCR for airborne bacterial quantification. Annals of Occupational Hygiene, 52(5), 405–412.

    Article  CAS  Google Scholar 

  • Orciuolo, E., Stanzani, M., Canestraro, M., Galimberti, S., Carulli, G., Lewis, R., et al. (2007). Effects of Aspergillus fumigatus gliotoxinand methylprednisolone on human neutrophils: implications for the pathogenesis of invasive aspergillosis. Journal of Leukocyte Biology, 82, 839–848.

    Article  CAS  Google Scholar 

  • Pena, G. A., Pereyra, C. M., Armando, M. R., Chiacchiera, S. M., Magnoli, C. E., Orlando, J. L., et al. (2010). Aspergillus fumigatus toxicity and gliotoxin levels in feedstuff for domestic animals and pets in Argentina. Letters in Applied Microbiology, 50, 77–81.

    Article  CAS  Google Scholar 

  • Pereyra, C. M., Alonso, V. A., Rosa, C. A. R., Chiacchiera, S. M., Dalcero, A. M., & Cavaglieri, L. R. (2008). Gliotoxin natural incidence of Aspergillus fumigatus isolated from corn silage and ready dairy cattle feed. World Mycotoxin Journal, 1, 457–462.

    Article  CAS  Google Scholar 

  • Radon, K., Danuser, B., Iversen, M., Jo¨rres, R., Monso, E., Opravil, U., et al. (2001). Respiratory symptoms in European animal farmers. European Respiratory Journal, 17, 747–754.

    Article  CAS  Google Scholar 

  • Rhame, F. S. (1991). Prevention of nosocomial aspergillosis. Journal of Hospital Infection, 18, 466–472.

    Article  Google Scholar 

  • Rylander, R., & Carvalheiro, M. (2006). Airways inflammation among workers in poultry houses. International Archives of Occupational and Environmental Health, 79, 487–490.

    Article  Google Scholar 

  • Sabino, R., Faísca, V., Carolino, E., Veríssimo, C., & Viegas, C. (2012). Occupational exposure to aspergillus by swine and poultry farm workers in Portugal. Journal of Toxicology and Environmental Health, Part A, 75, 1381–1391.

    Article  CAS  Google Scholar 

  • Samson, R. A., Flannigan, B., Flannigan, M. E., Verhoeff, A. P., Adan, O. C. G., & Hoekstra, E. S. (1994). Air quality monographs (Vol. 2. Health implications of fungi in indoor air environments, p. 531–538). Amsterdam: Elsevier Publications.

    Google Scholar 

  • Samson, R., Hoekstra, E., Frisvad, J. (2000). Introduction to food and airborne fungi. 6th ed. Utrecht : Centraalbureau voor Schimmelcultures.

  • Sauter, E., Petersen, C., Steele, E., Parkinson, J., Dixon, J., & Stroh, R. (1981). The airborne microflora of poultry houses. Poultry Science, 60, 569–574.

    Article  CAS  Google Scholar 

  • Schneweis, I., Meyer, K., Hormansdorfer, S., & Bauer, J. (2001). Metabolites of Monascus ruber in silages. Journal of Animal Physiology and Animal Nutrition (Berlin), 85, 38–44.

    Article  CAS  Google Scholar 

  • Scudamore, K., & Livesey, C. (1998). Occurrence and significance of mycotoxins in forage crops and silage: a review. Journal of the Science of Food and Agriculture, 77, 1–17.

    Article  CAS  Google Scholar 

  • Sexton, K., & Hattis, D. (2007). Assessing cumulative health risks from exposure to environmental mixtures—Three fundamental questions. Environmental Health Perspectives, 115, 825–832.

    Article  CAS  Google Scholar 

  • Senthilselvan, A., Dosman, J. A., Kirychuk, S. P., Barber, E. M., Rhodes, C. S., Zhang, Y., et al. (1997). Accelerated lung function decline in swine confinement workers. Chest, 111, 1733–1741.

    Article  CAS  Google Scholar 

  • Strachan, D., Flannigan, B., & Mccabe, E. (1990). Quantification of airborne moulds in the homes of children with and without wheeze. Thorax, 45(5), 382–387.

    Article  CAS  Google Scholar 

  • Sutton, P., Waring, P., & Mullbacher, A. (1996). Exacerbation of invasive aspergillosis by the immunosuppressive fungal metabolite, gliotoxin. Immunology and Cell Biology, 74, 318–322.

    Article  CAS  Google Scholar 

  • Thrane, U., Adler, A., Clasen, P. E., Galvano, F., Langseth, W., Lew, H., et al. (2004). Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. International Journal of Food Microbiology, 95, 257–266.

    Article  CAS  Google Scholar 

  • Viegas, C., Malta-Vacas, J., Sabino, R. (2012). Molecular biology versus conventional methods—complementary methodologies to understand occupational exposure to fungi. International Symposium on Occupational Safety and Hygiene 478 – 479.

  • Viegas, C., Viegas, S., Monteiro, A., Carolino, E., Sabino, R., & Veríssimo, C. (2012b). Comparison of indoor and outdoor fungi and particles in poultry units. Environmental Impact, 62, 589–596.

    Google Scholar 

  • Viegas, S., Veiga, L., Malta-Vacas, J., Sabino, R., Figueredo, P., Almeida, A., et al. (2012c). Occupational exposure to aflatoxin (AFB1) in poultry production. Journal of Toxicology and Environmental Health, Part A, 75, 1330–1340.

    Article  CAS  Google Scholar 

  • Watson, W., & Mutti, A. (2004). Role of biomarkers in monitoring exposures to chemicals: present position, future prospects. Biomarkers, 9, 211–242.

    Article  CAS  Google Scholar 

  • Wu, Z., Wang, X., & Blomquist, G. (2002). Evaluation of PCR primers and PCR conditions for specific detection of common airborne fungi. Journal of Environmental Monitoring, 4, 377–382.

    Article  CAS  Google Scholar 

  • Zorman, T., & Jersek, B. (2008). Assessment of bioaerosol concentrations in different indoor environments. Indoor and Built Environment, 17(2), 155–163.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Portuguese Ministry of Agriculture, Portuguese Ministry of Health, and poultry farmers. This study was funded by the Portuguese Authority for Work Conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Viegas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viegas, C., Malta-Vacas, J., Sabino, R. et al. Accessing indoor fungal contamination using conventional and molecular methods in Portuguese poultries. Environ Monit Assess 186, 1951–1959 (2014). https://doi.org/10.1007/s10661-013-3509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3509-4

Keywords

Navigation