Skip to main content
Log in

A Variational Model for Plastic Slip and Its Regularization via Γ-Convergence

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A variational model is presented able to interpret the onset of plastic deformations, here modeled as displacement jumps occurring along slip surfaces at constant yielding stress. The corresponding strain energy functional, leading to a free-discontinuity problem set in the space of SBV functions, is then approximated by a sequence of regularized elliptic functionals following the seminal work by Ambrosio and Tortorelli (Commun. Pure Appl. Math. 43, 999–1036, 1990) within the framework of Γ-convergence. Comparisons between the results obtainable with the free-discontinuity model and its regularized approximation, in terms of stability of the pure elastic phase, irreversibility of plastic slip and response under unloading, are presented, in general, for the 2-D case of antiplane shear and exemplified, in particular, for the 1-D case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Later on, the Γ-convergence result was demonstrated also in the vectorial case for the elastic energy by Chambolle [15] and for a certain class of general integrands by Focardi [28]. An exhaustive list of references for this kind of problems can be found in [5].

  2. The interest is not limited to fracture mechanics, but similar regularizations can be found in front capturing methods in gas dynamics (level set method) or phase field methods in the theory of defects.

  3. To this respect, we should mention the almost unknown work by Nakanishi, and [43] in particular.

  4. Here, to be rigorous, we should refer to the relaxed minimization problem (3.3), but for the sake of simplicity we will drop this distinction that does not produce substantial differences.

  5. To be precise, one should define also for the 1-D case the counterpart of the relaxed problem (3.3), but for simplicity of analysis we will assume that the distinction is understood.

  6. In the context of the pure Ambrosio-Tortorelli functional, it has been shown in [29] that critical points of the 1d-Ambrosio-Tortorelli model with Dirichlet data do converge to (adequately defined) critical points of the free discontinuity functional. However, our functional is substantially different; the mathematical proof of convergence of local minimizers is delicate and goes beyond the scope of this paper.

References

  1. Alicandro, R., Braides, A., Shah, J.: Free-discontinuity problems via functionals involving the L 1-norm of the gradient and their approximations. Interfaces Free Bound. 1(1), 17–37 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43, 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000)

    MATH  Google Scholar 

  4. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Unione Mat. Ital, B (7) 6(1), 105–123 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Amor, H., Marigo, J.-J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)

    Article  ADS  MATH  Google Scholar 

  6. Asaro, R.J., Rice, J.R.: Strain localization in ductile single crystals. J. Mech. Phys. Solids 25(5), 309–338 (1977)

    Article  ADS  MATH  Google Scholar 

  7. Aydin, A., Johnson, A.M.: Analysis of faulting in porous sandstones. J, Struct. Geol. 5(1), 19–31 (1983)

    Article  ADS  Google Scholar 

  8. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. In: Advances in Applied Mechanics, vol. 7, pp. 55–129. Academic Press, New York (1962)

    Google Scholar 

  9. Bigoni, D., Dal Corso, F.: The unrestrainable growth of a shear band in a prestressed material. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464(2097), 2365–2390 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Biolzi, L., Royer-Carfagni, G.: Experimental evidence of serrated elastic-plastic deformation of metallic bars under torsion. In: Atti XV Congresso Nazionale AIMETA, pages SPSO–04 (in extenso on CD–ROM), Taormina, Italy, September 2001

  11. Bourdin, B.: Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound. 9(3), 411–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourdin, B., Francfort, G.A., Marigo, J.-J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Braides, A., Defranceschi, A., Vitali, E.: A relaxation approach to Hencky’s plasticity. Appl. Math. Optim. 35(1), 45–68 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Chambolle, A.: A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167(3), 211–233 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chambolle, A.: An approximation result for special functions with bounded deformation. J. Math. Pures Appl. 83(7), 929–954 (2004)

    MathSciNet  Google Scholar 

  16. Charlotte, M., Laverne, J., Marigo, J.-J.: Initiation of cracks with cohesive force models: a variational approach. Eur. J. Mech. A, Solids 25(4), 649–669 (2006). 6th EUROMECH Solid Mechanics Conference—General/Plenary Lectures

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Cortesani, G., Toader, R.: A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. Ser. B, Real World Appl. 38(5), 585–604 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Cottrell, A.: Dislocations and Plastic Flow in Crystals, 4th edn. Clarendon Press, Oxford (1961)

    Google Scholar 

  19. Cox, T., Low, J.: An investigation of the plastic fracture of aisi 4340 and 18 nickel-200 grade maraging steels. Metall. Mater. Trans. B 5, 1457–1470 (1974). doi:10.1007/BF02646633

    Article  Google Scholar 

  20. Dal Maso, G.: An Introduction to Γ-Convergence. Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkhäuser, Boston (1993)

    Book  Google Scholar 

  21. Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162(2), 101–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. De Giorgi, E., Ambrosio, L.: New functionals in calculus of variations. In: Nonsmooth Optimization and Related Topics, Erice, 1988. Ettore Majorana Internat. Sci. Ser. Phys. Sci., vol. 43, pp. 49–59. Plenum, New York (1989)

    Google Scholar 

  23. De-Lellis, C., Royer-Carfagni, G.: Interaction of fractures in tensile bars with non-local spatial dependence. J. Elast. 65(1–3), 1–31 (2002)

    MathSciNet  Google Scholar 

  24. Del Piero, G.: Towards a unified approach to fracture yielding, and damage. In: Continuum Models and Discrete Systems, Istanbul, 1998, pp. 679–692. World Sci. Publ., River Edge (1998)

    Google Scholar 

  25. Del Piero, G., Owen, D.R.: Structured deformations of continua. Arch. Ration. Mech. Anal. 124(2), 99–155 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Del Piero, G., Truskinovsky, L.: Elastic bars with cohesive energy. Contin. Mech. Thermodyn. 21(2), 141–171 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)

    Article  ADS  Google Scholar 

  28. Focardi, M.: On the variational approximation of free-discontinuity problems in the vectorial case. Math. Models Methods Appl. Sci. 11(4), 663–684 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Francfort, G., Le, N., Serfaty, S.: Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case. ESAIM Control Optim. Calc. Var. 15(3), 576–598 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Freddi, F., Royer-Carfagni, G.: A variational approach to plasticity. numerical experiments. In: Atti XX Congresso Nazionale AIMETA, Bologna, Italy, September (2011)

    Google Scholar 

  32. Frémond, M.: Non-smooth Thermomechanics. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  33. Froli, M., Royer-Carfagni, G.: Discontinuous deformation of tensile steel bars: experimental results. ASCE J. Eng. Mech. 125(11), 1243–1250 (1999)

    Article  Google Scholar 

  34. Froli, M., Royer-Carfagni, G.: A mechanical model for the elastic-plastic behavior of metallic bars. Int. J. Solids Struct. 37(29), 3901–3918 (2000)

    Article  MATH  Google Scholar 

  35. Georgiannou, V.: A laboratory study of slip surface formation in an intact natural stiff clay. Géotechnique 56(8), 551–559 (2006)

    Article  Google Scholar 

  36. Hahn, G., Rosenfield, A.: Metallurgical factors affecting fracture toughness of aluminum alloys. Metall. Mater. Trans. A 6, 653–668 (1975). doi:10.1007/BF02672285

    Article  ADS  Google Scholar 

  37. Hakim, V., Karma, A.: Laws of crack motion and phase-field models of fracture. J. Mech. Phys. Solids 57(2), 342–368 (2009)

    Article  ADS  MATH  Google Scholar 

  38. Hillerborg, A., Modèer, M., Petersson, P.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6(6), 773–781 (1976)

    Article  Google Scholar 

  39. Körber, F., Siebel, E.: Zur theorie der bildsamen formänderung. Naturwissenschaften 16, 408–412 (1928). doi:10.1007/BF01459027

    Article  ADS  Google Scholar 

  40. Lancioni, G., Royer-Carfagni, G.: The variational approach to fracture mechanics. A practical application to the French Panthéon in Paris. J. Elast. 95(1–2), 1–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, Revised 2nd edn. Course of Theoretical Physics, vol. 2. Pergamon Press, Oxford (1962). Translated from the Russian by Morton Hamermesh

    MATH  Google Scholar 

  42. Nadai, A.: Theory of Flow and Fracture of Solids. McGraw-Hill, New York (1950)

    Google Scholar 

  43. Nakanishi, F.: On yield point of mild steel. Rep. Aeronaut. Res. Inst. 6, 83–140 (1931)

    Google Scholar 

  44. Ord, A., Vardoulakis, I., Kajewski, R.: Shear band formation in Gosford sandstone. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28(5), 397–409 (1991)

    Article  Google Scholar 

  45. Osakada, K.: History of plasticity and metal forming analysis. J. Mater. Process. Technol. 210(11), 1436–1454 (2010)

    Article  Google Scholar 

  46. Palmer, A.C., Rice, J.R.: The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 332(1591), 527–548 (1973)

    Article  ADS  MATH  Google Scholar 

  47. Price, R., Kelly, A.: Deformation of age-hardened aluminium alloy crystals—ii. Fracture. Acta Metall. 12(9), 979–992 (1964)

    Article  Google Scholar 

  48. Rice, J.R.: The localization of plastic deformation. In: Koiter, W. (ed.) Theoretical and Applied Mechanics (Proceedings of the 14th International Congress on Theoretical and Applied Mechanics), Delft, 1976, pp. 207–220. North-Holland, Amsterdam (1976)

    Google Scholar 

  49. Rittel, D., Wang, Z.G., Merzer, M.: Adiabatic shear failure and dynamic stored energy of cold work. Phys. Rev. Lett. 96(7), 075502 (2006)

    Article  ADS  Google Scholar 

  50. Saurer, E., Puzrin, A.M.: Energy balance approach to shear band propagation in shearblade tests. In: International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, September, pp. 1024–1031 (2008)

    Google Scholar 

  51. Saurer, E., Puzrin, A.M.: Validation of the energy-balance approach to curve-shaped shear-band propagation in soil. Proc. R. Soc. A, Math. Phys. Eng. Sci. 467(2127), 627–652 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Tanaka, K., Spretnak, J.: An analysis of plastic instability in pure shear in high strength aisi 4340 steel. Metall. Mater. Trans. B 4, 443–454 (1973). doi:10.1007/BF02648697

    Article  Google Scholar 

  53. Vol’pert, A.I.: Spaces BV and quasilinear equations. Mat. Sb. 73(115), 255–302 (1967)

    MathSciNet  Google Scholar 

  54. Vol’pert, A.I.: Analysis in classes of discontinuous functions and partial differential equations. In: New Results in Operator Theory and Its Applications. Oper. Theory Adv. Appl., vol. 98, pp. 230–248. Birkhäuser, Basel (1997)

    Chapter  Google Scholar 

  55. Wessels, E., Jackson, P.: Latent hardening in copper-aluminium alloys. Acta Metall. 17(3), 241–248 (1969)

    Article  Google Scholar 

  56. Wolf, H., König, D., Triantafyllidis, T.: Experimental investigation of shear band patterns in granular material. J, Struct. Geol. 25(8), 1229–1240 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

L.Am. gratefully acknowledges the support of the MIUR PRIN06 grant. G.R.C. would like to acknowledge the partial support of the Italian MURST under the PRIN-2008 program “Structural use of glass”. This work was done while A.Le. was affiliated to the mathematical research center E. De Giorgi and he wishes to thank all the members of the center and the Scuola Normale Superiore of Pisa for their kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Royer-Carfagni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosio, L., Lemenant, A. & Royer-Carfagni, G. A Variational Model for Plastic Slip and Its Regularization via Γ-Convergence. J Elast 110, 201–235 (2013). https://doi.org/10.1007/s10659-012-9390-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9390-5

Keywords

Mathematics Subject Classification

Navigation