Skip to main content
Log in

An infectious cDNA clone of a radish-infecting Turnip mosaic virus strain

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Turnip Mosaic Virus (TuMV) is an economically important potyvirus for which hundreds of hosts have been reported, thus making it a rather exceptional case in the genus. Several viral infectious clones have been generated over the years, which have been useful in deciphering the viral elements involved in the interactions of this virus with the host plant, such as different forms of resistance, gene silencing suppression, host range or host developmental alterations. However, all infectious clones obtained so far correspond to viral isolates within the same phylogenetic cluster, a circumstance biasing our understanding of the peculiarities of this potyvirus. In particular, members of one viral cluster of radish-infecting isolates have been especially reluctant to be copied into infectious clones. This paper reports the construction of an infectious clone of the TuMV isolate JPN 1, belonging to this cluster. The infectious clone maintains all the distinctive biological properties previously described for this viral isolate. The availability of this infectious clone opens the door to many additional studies on the virus, which should allow a deeper understanding of the differential responses to different strains of TuMV in several different hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Agbeci, M., Grangeon, R., Nelson, R. S., Zheng, H., & Laliberté, J.-F. (2013). Contribution of host intracellular transport machineries to intercellular movement of turnip mosaic virus. PLoS Pathogens, 9(10), e1003683.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedoya, L. C., & Daròs, J. A. (2010). Stability of tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234–240.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. C., Chen, T. C., Raja, J. A., Chang, C. A., Chen, L. W., Lin, S. S., et al. (2007). Effectiveness and stability of heterologous proteins expressed in plants by turnip mosaic virus vector at five different insertion sites. Virus Research, 130(1–2), 210–227.

    Article  CAS  PubMed  Google Scholar 

  • Chung, B. Y., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the potyviridae. Proceedings of the National Academy of Sciences of United Stages of America, 105(15), 5897–5902.

    Article  CAS  Google Scholar 

  • Deng, P., Wu, Z., & Wang, A. (2015). The multifunctional protein CI of potyviruses plays interlinked and distinct roles in viral genome replication and intercellular movement. Virology Journal, 12(1), 1–11.

    Article  Google Scholar 

  • Garcia-Ruiz, H., Carbonell, A., Hoyer, J. S., Fahlgren, N., Gilbert, K. B., Takeda, A., et al. (2015). Roles and programming of arabidopsis ARGONAUTE proteins during turnip mosaic virus infection. PLoS Pathogens, 11(3), e1004755.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibbs, A. J., Nguyen, H. D., & Ohshima, K. (2015). The ‘emergence’ of turnip mosaic virus was probably a ‘gene-for-quasi-gene’ event. Current Opinion Virology, 10(C), 20–26.

    Article  CAS  Google Scholar 

  • Grangeon, R., Jiang, J., Wan, J., Agbeci, M., Zheng, H., & Laliberte, J. F. (2013). 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Frontiers in Microbiology, 4, 351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagiwara-Komoda, Y., Choi, S. H., Sato, M., Atsumi, G., Abe, J., Fukuda, J., et al. (2016). Truncated yet functional viral protein produced via RNA polymerase slippage implies underestimated coding capacity of RNA viruses. Science Reports, 6, 21411.

    Article  CAS  Google Scholar 

  • Jakab, G., Droz, E., Brigneti, G., Baulcombe, D., & Malnoe, P. (1997). Infectious in vivo and in vitro transcripts from a full-length cDNA clone of PVY-N605, a Swiss necrotic isolate of potato virus Y. Journal of General Virology, 78(Pt 12), 3141–3145.

    Article  CAS  PubMed  Google Scholar 

  • Jenner, C. E., & Walsh, J. A. (1996). Pathotypic variation in turnip mosaic virus with special reference to European isolates. Plant Pathology, 45(5), 848–856.

    Article  Google Scholar 

  • Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F., & Walsh, J. A. (2003). The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas. Molecular Plant-Microbe Interactions, 16(9), 777–784.

    Article  CAS  PubMed  Google Scholar 

  • Johansen, I. E. (1996). Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proceedings of the National Academy of Sciences of the United Stages of America, 93(22), 12400–12405.

    Article  CAS  Google Scholar 

  • Kung, Y. J., Lin, P. C., Yeh, S. D., Hong, S. F., Chua, N. H., Liu, L. Y., et al. (2014). Genetic analyses of the FRNK motif function of turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Molecular Plant-Microbe Interactions, 27(9), 944–955.

    Article  CAS  PubMed  Google Scholar 

  • López-Moya, J. J., & García, J. A. (2000). Construction of a stable and highly infectious introncontaining cDNA clone of plum pox potyvirus and its use to infect plants by particle bombardment. Virus Research, 68(2), 99–107.

  • Nguyen, H. D., Tomitaka, Y., Ho, S. Y., Duchene, S., Vetten, H. J., Lesemann, D., et al. (2013). Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago. PLoS One, 8(2), e55336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolasco, G., de Blas, C., Torres, V., & Ponz, F. (1993). A method combining immunocapture and PCR amplification in a microtiter plate for the detection of plant viruses and subviral pathogens. Journal of Virological Methods, 45(2), 201–218.

    Article  CAS  PubMed  Google Scholar 

  • Ohshima, K., Yamaguchi, Y., Hirota, R., Hamamoto, T., Tomimura, K., Tan, Z. Y., et al. (2002). Molecular evolution of turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. Journal of General Virology, 83(Pt 6), 1511–1521.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez, F., MartínezHerrera, D., Aguilar, I., & Ponz, F. (1998). Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis thaliana and local lesion hosts. Virus Research, 55(2), 207–219.

    Article  PubMed  Google Scholar 

  • Sánchez, F., Wang, X., Jenner, C. E., Walsh, J. A., & Ponz, F. (2003). Strains of turnip mosaic potyvirus as defined by the molecular analysis of the coat protein gene of the virus. Virus Research, 94(1), 33–43.

    Article  PubMed  Google Scholar 

  • Sánchez, F., Manrique, P., Mansilla, C., Lunello, P., Wang, X., Rodrigo, G., et al. (2015). Viral strain-specific differential alterations in Arabidopsis developmental patterns. Molecular Plant-Microbe Interactions, 28(12), 1304–1315.

    Article  PubMed  Google Scholar 

  • Suehiro, N., Natsuaki, T., Watanabe, T., & Okuda, S. (2004). An important determinant of the ability of turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology, 85(Pt 7), 2087–2098.

    Article  CAS  PubMed  Google Scholar 

  • Thole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiology, 145(4), 1211–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmerman, K. P., & Tu, C. P. (1985). Complete sequence of IS3. Nucleic Acids Research, 13(6), 2127–2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomimura, K., Gibbs, A. J., Jenner, C. E., Walsh, J. A., & Ohshima, K. (2003). The phylogeny of turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Molecular Ecology, 12(8), 2099–2111.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, J. A., & Jenner, C. E. (2002). Turnip mosaic virus and the quest for durable resistance. Molecular Plant Pathology, 3(5), 289.

    Article  CAS  PubMed  Google Scholar 

  • Wan, J., Basu, K., Mui, J., Vali, H., Zheng, H., & Laliberte, J. F. (2015). Ultrastructural characterization of turnip mosaic virus-induced cellular rearrangements reveals membrane-bound viral particles accumulating in vacuoles. Journal of Virology, 89(24), 12441–12456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank P. Sardaru, C. Yuste-Calvo and L. Zurita for their technical help and support. The research for this paper was financially supported by the INIA-RTA grant 2010-00098-00-00 to F. Ponz, the Spanish Ministerio de Economía y Competitividad (MINECO) grants AGL2013-49919-EXP and BIO2014-54269-R to J.A.D, and an FPI-INIA grant from MINECO to S. López-González.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ponz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(DOCX 1403 kb)

Supplementary Fig. 2

(DOCX 2628 kb)

Supplementary Table 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-González, S., Aragonés, V., Daròs, JA. et al. An infectious cDNA clone of a radish-infecting Turnip mosaic virus strain. Eur J Plant Pathol 148, 207–211 (2017). https://doi.org/10.1007/s10658-016-1057-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1057-9

Keywords

Navigation