Skip to main content
Log in

Expression of a tomato MYB gene in transgenic tobacco increases resistance to Fusarium oxysporum and Botrytis cinerea

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

MYB transcription factors play an essential role in defense responses in various plant species. Although research has investigated the function of MYB transcription factors, relative to the research progress in model plants, limited numbers of MYB transcription factors have been studied in tomato. In our previous study, transgenic tobacco plants overexpressing SpMYB increased resistance to Alternaria alternata. In the present study, some cis-acting elements associated with the environmental stresses response were observed in the promoter of this gene. SpMYB expression was significantly induced after infection with Fusarium oxysporum and Botrytis cinerea. Furthermore, transgenic tobacco plants increased resistance to F. oxysporum and B. cinerea compared with wild-type plants, and the transgenic plants had lower malonaldehyde content, but higher peroxidase, superoxide dismutase and phenylalanine ammonia-lyase activities. This resistance was also coupled with enhanced the expression of some defense-related genes (NtPOD, NtSOD and NtPAL) as well as marker genes for the jasmonic acid signaling pathway (NtPR4 and NtPDF1.2). Moreover, the transgenic plants also exhibited lower levels of H2O2 accumulation than wild-type plants following pathogen infection. Taken together, these results suggested that SpMYB positively regulates plant disease resistance; these findings will expand our knowledge on the function of tomato MYB transcription factors in defense against pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abuqamar, S., Luo, H., Laluk, K., Mickelbart, M. V., & Menqiste, T. (2009). Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant Journal, 58(2), 347–360.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed, N. U., Park, J. I., Jung, H. J., Kang, K. K., Lim, Y. P., Hur, Y., & Nou, I. S. (2013). Molecular characterization of thaumatin family genes related to stresses in Brassica rapa. Scientia Horticulturae, 152, 26–34.

    Article  CAS  Google Scholar 

  • Berrocal-Lobo, M., & Molina, A. (2004). Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Molecular Plant-Microbe Interactions, 17(7), 763–770.

    Article  PubMed  CAS  Google Scholar 

  • Bora, T., Özaktan, H., Göre, E., & Aslan, E. (2004). Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. Journal of Phytopathol, 152(8–9), 471–475.

    Article  Google Scholar 

  • Buscaill, P., & Rivas, S. (2014). Transcriptional control of plant defence responses. Current Opinion in Plant Biology, 20, 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Cakir, B., Gül, A., Yolageldi, L., & Özaktan, H. (2014). Response to Fusarium oxysporum f. sp. radicis-lycopersici in tomato roots involves regulation of SA- and ET-responsive gene expressions. European Journal of Plant Pathology, 139(2), 379–391.

    Article  CAS  Google Scholar 

  • Ciolkowski, I., Wanke, D., Birkenbihl, R. P., & Somssich, I. E. (2008). Studies on DNA binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology, 68(1–2), 81–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dang, F. F., Wang, Y. N., Yu, L., Eulgem, T., Lai, Y., Liu, Z. Q., et al. (2013). CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant Cell Environment, 36(4), 757–774.

    Article  CAS  Google Scholar 

  • Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends in Plant Science, 15(10), 573–581.

    Article  PubMed  CAS  Google Scholar 

  • Eulgem, T., & Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling. Current Opinion Plant Biology, 10(4), 366–371.

    Article  CAS  Google Scholar 

  • Huang, Y. J., Yin, X. R., Zhu, C. Q., Wang, W. W., Grierson, D., Xu, C. J., & Chen, K. S. (2013). Standard addition quantitative real-time PCR (SAQPCR): a novel approach for determination of transgene copy number avoiding PCR efficiency estimation. PloS One, 8(1), e53489.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang, C. K., Lo, P. C., Huang, L. F., Wu, S. J., Yeh, C. H., & Lu, C. A. (2015). A single-repeat MYB transcription repressor, MYBH, participates in regulation of leaf senescence in Arabidopsis. Plant Molecular Biology, 88(3), 269–286.

    Article  PubMed  CAS  Google Scholar 

  • Kotchoni, S. O., & Gachomo, E. W. (2006). The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. Journal of Biosciences, 31(3), 389–404.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. B., Luan, Y. S., & Jin, H. (2012). The tomato SlWRKY gene plays an important role in the regulation of defense responses in tobacco. Biochemistry and Biophysical Research Communications, 427(3), 671–676.

    Article  CAS  Google Scholar 

  • Li, J. B., Luan, Y. S., & Yin, Y. L. (2014). SpMYB overexpression in tobacco plants leads to altered abiotic and biotic stress responses. Gene, 547(1), 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. B., Luan, Y. S., & Liu, Z. (2015a). Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco. Physiologia Plantarum. doi:10.111/ppl.12315.

    Google Scholar 

  • Li, J. B., Luan, Y. S., & Liu, Z. (2015b). SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato. Plant Cell Tissue and Organ Culture, 123(1), 67–81.

    Article  CAS  Google Scholar 

  • Liang, G., He, H., Li, Y., Ai, Q., & Yu, D. Q. (2014). MYB82 functions in regulation of trichome development in Arabidopsis. Journal of Experimental Botany, 65(12), 3215–3223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, H. X., Zhou, X. Y., Dong, N., Liu, X., Zhang, H. Y., & Zhang, Z. Y. (2011a). Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Function Integrative Genomics, 11(3), 431–443.

    Article  CAS  Google Scholar 

  • Liu, W. Y., Chiou, S. J., Ko, C. Y., & Lin, T. Y. (2011b). Functional characterization of three ethylene response factor genes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea. Journal of Plant Physiology, 168(4), 375–381.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Yang, L. H., Zhou, X. Y., Zhou, M. P., Lu, Y., Ma, L. J., et al. (2013). Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. Journal of Experimental Botany, 64(8), 2243–2253.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X., Jiang, W. M., Zhang, L., Zhang, F., Zhang, F. Y., Shen, Q., et al. (2013). AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua. PloS One, 8(2), e57657.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maruyama, Y., Yamoto, N., Suzuki, Y., Chiba, Y., Yamazaki, Y., Sato, T., et al. (2013). The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi. Plant Science, 213, 79–87.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, K. C., Dombrecht, B., Manners, J. M., Schenk, P. M., Edgar, C. I., Maclean, D. J., et al. (2005). Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiology, 139(2), 949–959.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meng, X., Yin, B., Feng, H. L., Zhang, S., Liang, X. Q., & Meng, Q. W. (2014). Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress. Biologia Plantarum, 58(1), 121–130.

    Article  CAS  Google Scholar 

  • Munis, M. F. H., Tu, L. L., Deng, F. L., Tan, J. F., Xu, L., & Xu, S. C. (2010). A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochemistry and Biophysical Research Communications, 393(1), 38–44.

    Article  CAS  Google Scholar 

  • Mur, L. A. J., Kenton, P., Atzorn, R., Miersch, O., & Wasternack, C. (2006). The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology, 140(1), 249–262.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Panda, S. K. (2007). Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of Plant Physiology, 164(11), 1419–1428.

    Article  PubMed  CAS  Google Scholar 

  • Seo, P. J., & Park, C. M. (2010). MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytologist, 186(2), 471–483.

    Article  PubMed  CAS  Google Scholar 

  • Shi, W. N., Liu, D. D., Hao, L. L., Wu, C. A., Guo, X. Q., & Li, H. (2014). GhWRKY39, a member of the WRKY transcription factor family in cotton, has a positive role in disease resistance and salt stress tolerance. Plant Cell Tissue and Organ Culture, 118(1), 17–32.

    Article  CAS  Google Scholar 

  • Sun, D. Q., Lu, X. H., Hu, Y. L., Li, W. M., Hong, K. Q., Mo, Y. W., et al. (2013). Methyl jasmonate induced defense responses increase resistance to Fusarium oxysporum f. sp. cubense race 4 in banana. Scientia Horticulturae, 164, 484–491.

    Article  CAS  Google Scholar 

  • Vannini, C., Iriti, M., Bracale, M., Locatelli, F., Faoro, F., Croce, P., et al. (2006). The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiological and Molecular Plant Pathology, 69(1–3), 26–42.

    Article  CAS  Google Scholar 

  • Vannini, C., Campa, M., Iriti, M., Genga, A., Faoro, F., Carravieri, S., et al. (2007). Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Science, 173(2), 231–239.

    Article  CAS  Google Scholar 

  • Wang, W., Zhang, L., Guo, N., Zhang, X. M., Zhang, C., Sun, G. M., & Xie, J. H. (2014). Functional properties of a cysteine proteinase from pineapple fruit with improved resistance to fungal pathogens in Arabidopsis thaliana. Molecules, 19(2), 2374–2389.

    Article  PubMed  Google Scholar 

  • Zhang, X., Cheng, Z. J., Lin, Q. B., Wang, J. L., & Wan, J. M. (2011). Cloning of cold-inducible gene SlCMYB1 and its heterologous expression in rice. Acta Agronomica Sinica, 37(4), 587–594.

    Article  CAS  Google Scholar 

  • Zhang, Z., Liu, X., Wang, X., Zhou, M. P., Zhou, X. Y., Ye, X. G., & Wei, X. N. (2012). An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytologist, 196(4), 1155–1170.

    Article  PubMed  CAS  Google Scholar 

  • Zou, B. H., Jia, Z. H., Tian, S. G., Wang, X. M., Gou, Z. H., Lü, B. B., et al. (2012). AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis. Functional Plant Biology, 40(3), 304–313.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31272167, 31471880 and 61472061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushi Luan.

Electronic supplementary material

Fig. S1

(DOCX 525 kb)

Table S1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Luan, Y., Li, J. et al. Expression of a tomato MYB gene in transgenic tobacco increases resistance to Fusarium oxysporum and Botrytis cinerea . Eur J Plant Pathol 144, 607–617 (2016). https://doi.org/10.1007/s10658-015-0799-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0799-0

Keywords

Navigation