Skip to main content
Log in

Antagonistic activity of fungal endophyte filtrates against Gremmeniella abietina infections on Aleppo pine seedlings

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Biological control agents (BCAs), and among them some species of fungal endophytes, are potential substitutes for chemical pesticides in the control of plant diseases due to their non-toxicity to human beings and their surrounding environment. One mode of action of fungal BCAs is through their bioactive, extracellular products, which can inhibit the growth of pathogens. In this study, the effect of fungal filtrates from four endophyte isolates (Trichoderma viride, Aureobasidium pullulans, Aureobasidium sp. and the unknown endophyte 20.1) on the advance of the pathogen Gremmeniella abietina on 2-year Pinus halepensis seedlings was evaluated. Both preventive and therapeutic treatments of the filtrates were studied by applying the filtrates either before or after the pathogen inoculation, respectively. Since G. abietina is a necrotrophic fungus, the length of the necrosis produced by the pathogen was used as response variable in our experiment. In order to explore the chemical composition of the fungal filtrates, a simple HPLC screening of UV-absorbing components was conducted. The results of the study showed that all fungal filtrates were able to reduce the advance of G. abietina when compared to the control seedlings, regardless of the time of inoculation and the treatment. Low-molecular weight phenolic compounds could be detected in some but not all filtrates, warranting further studies on the possible role of these compounds in fungal filtrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abelló, M. A. (1998). Historia y evolución de las repoblaciones forestales en España. Madrid: Universidad Complutense de Madrid.

    Google Scholar 

  • Adomas, A., & Asiegbu, F. (2007). Analysis of organ-specific responses of Pinus sylvestris to shoot (Gremmeniella abietina) and root (Heterobasidion annosum) pathogens. Physiological and Molecular Plant Pathology, 69, 140–152. doi:10.1016/j.pmpp.2007.04.001.

    Article  Google Scholar 

  • Agrios, G. N. (1997). Plant pathology (4th ed.). London: Academic Press.

    Google Scholar 

  • Alabouvette, C., Olivain, C., & Steinberg, C. (2006). Biological control of plant diseases: the European situation. European Journal of Plant Pathology, 114, 329–341. doi:10.1007/s10658-005-0233-0.

    Article  Google Scholar 

  • Anagnostakis, S. L., & Day, P. R. (1979). Hypovirulence conversion in Endothia parasitica. Phytopathology, 69, 1226–1229. doi:10.1094/Phyto-69-1226.

    Article  CAS  Google Scholar 

  • Aziz, A. Y., Foster, H. A., & Fairhurst, C. P. (1993). Extracellular enzymes of Trichoderma harzianum, T. polysporum and Scytalidium lignicola in relation to biological control of Dutch Elm disease. Arboricultural Journal, 17, 159–170. doi:10.1080/03071375.1993.9746959.

    Article  Google Scholar 

  • Backman, P. A., & Sikora, R. A. (2008). Endophytes: an emerging tool for biological control. Biological Control, 46, 1–3. doi:10.1016/j.biocontrol.2008.03.009.

    Article  Google Scholar 

  • Bencheqroun, S. K., Bajji, M., Massart, S., Labhilili, M., El-jafari, S., & Jijakli, M. H. (2007). In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients. Postharvest Biology and Technology, 46, 128–135. doi:10.1016/j.postharvbio.2007.05.005.

    Article  CAS  Google Scholar 

  • Bhuiyan, S. A., Ryley, M. J., Galea, V. J., & Tay, D. (2003). Evaluation of potential biocontrol agents against Claviceps africana in vitro and in vivo. Plant Pathology, 52(1), 60–67. doi:10.1046/j.1365-3059.2003.00799.x.

    Article  Google Scholar 

  • Brimner, T., & Boland, G. J. (2003). A review of the non-target effects of fungi used to biologically control plant diseases. Agriculture, Ecosystems & Environment, 100, 3–16. doi:10.1016/S0167-8809(03)00200-7.

    Article  Google Scholar 

  • Campanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 117(3), 237–246. doi:10.1007/s10658-006-9089-1.

    Article  Google Scholar 

  • Castoria, R., De Curtis, F., Lima, G., Caputo, L., Pacifico, S., & De Cicco, V. (2001). Aureobasidium pullulans (LS-30) an antagonist of post-harvest pathogens of fruits: study on its modes of action. Postharvest Biology and Technology, 22, 7–17. doi:10.1016/s0925-5214(00)00186-1.

    Article  Google Scholar 

  • Cook, J., Bruckart, W. L., Coulson, J. R., Goettel, M. S., Humber, R. A., Lumsden, R. D., Maddox, J. V., McManus, M. L., Moore, L., Meyer, S. F., Quimby, P. C., Stack, J. P., & Vaughn, J. L. (1996). Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation. Biological Control, 7, 333–351. doi:10.1006/bcon.1996.0102.

    Article  Google Scholar 

  • Díaz, G., Córcoles, A. I., Asencio, A. D., & Torres, M. P. (2013). In vitro antagonism of Trichoderma and naturally occurring fungi from elms against Ophiostoma novo-ulmi. Forest Pathology, 43, 51–58. doi:10.1111/j.1439-0329.2012.00792.x.

    Google Scholar 

  • Diez, J. J., & Alves-Santos, F. (2011). Use of edible ectomycorrhizal fungi to control Fusarium diseases in forest nurseries. In F. Alves-Santos & J. J. Diez (Eds.), Control of Fusarium diseases (pp. 109–130). Kerala: Research Signpost.

    Google Scholar 

  • DIRECTIVE 2009/128/EC of the European parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Official Journal of the European Union, 24.09.2009, L 309/71–86.

  • Doğmuş-Lehtijärvi, H. T., Oskay, F., & Lehtijarvi, A. (2012). Susceptibility of Pinus nigra and Cedrus libani to Turkish Gremmeniella abietina isolates. Forest Systems, 21, 306–312. doi:10.5424/fs/2012212-02251.

    Google Scholar 

  • Dorworth, C. E. (1979). Influence of inoculum concentration on infection of red pine seedings by Gremmeniella abietina. Phytopathology, 69, 298–300.

    Article  Google Scholar 

  • Fernández Martínez, M., Royo, A., Gil Sánchez, L., & Pardos, J. A. (2003). Effects of temperatura on growth and stress hardening development of Phytotron-grown seedlings of aleepo pine (Pinus halepensis Mill.). Annals of Forest Science, 60, 277–284.

    Article  Google Scholar 

  • Franceschi, V. R., Krokene, P., Christiansen, E., & Krekling, T. (2005). Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist, 167, 353–75. doi:10.1111/j.1469-8137.2005.01436.x.

    Article  CAS  PubMed  Google Scholar 

  • Gil, L., Díaz, P., Jiménez, P., Roldán, M., Alía, R., Agúndez, D., De Miguel, J., Martín, S., & Tuero, M. (1996). Las regiones de procedencia de Pinus halepensis Mill. en España. Madrid: Ministerio de Medio Ambiente.

    Google Scholar 

  • Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4), 273–290. doi:10.3923/jbs.2010.273.290.

    Article  Google Scholar 

  • Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, 4–10. http://naldc.nal.usda.gov/download/27028/PDF.

  • Kaitera, J., & Jalkanen, R. (1992). Disease history of Gremmeniella abietina in a Pinus sylvestris stand. European Journal of Forest Pathology, 22, 371–378. doi:10.1111/j.1439-0329.1992.tb00309.x.

    Article  Google Scholar 

  • Kaitera, J., Müller, M., & Hantula, J. (1998). Occurrence of Gremmeniella abietina var. abietina large- and small-tree types in separate Scots pine stands in Northern Finland and in the Kola Peninsula. Mycological Research, 102, 199–208. doi:10.1017/S0953756297004589.

    Article  Google Scholar 

  • Laflamme, G. (1999). Successful control of Gremmeniella abietina, European race, in a red pine plantation. Phytoprotection, 80, 55–64. doi:10.7202/706180ar.

    Article  Google Scholar 

  • Laflamme, G., & Lachance, D. (1987). Large infection centre of Scleroderris canker (European race) in Quebec province. Plant Disease, 71, 1041–1043. doi:10.1094/PD-71-1041.

    Article  Google Scholar 

  • Lo, C.-T. (1998). General mechanisms of action of microbial biocontrol agents. Plant Pathology Bulletin, 7, 155–166.

    CAS  Google Scholar 

  • Mari, M., Martini, C., Spadoni, A., Rouissi, W., & Bertolini, P. (2012). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology, 73, 56–62. doi:10.1016/j.postharvbio.2012.05.014.

    Article  Google Scholar 

  • Marosy, M., Patton, R. F., & Upper, C. D. (1989). A conducive day concept to explain the effect of low temperature on the development of Scleroderris shoot blight. Phytopathology, 79, 1293–1301.

    Article  Google Scholar 

  • Müller, M., Kantola, R., & Kitunen, V. (1994). Combining sterol and fatty acid profiles for the characterization of fungi. Mycological Research, 98, 593–603. doi:10.1016/S0953-7562(09)80404-8.

    Article  Google Scholar 

  • Muñoz, Z., Moret, A., & Garcés, S. (2008). The use of Verticillum dahliae and Diplodia scrobiculata to in-duce resistance in Pinus halepensis against Diplodia pinea infection. European Journal of Plant Pathology, 120, 331–337.

    Article  Google Scholar 

  • Ownley, B. H., & Windham, M. T. (2007). Biological control of plant pathogens. In R. Trigiano, M. Windham, & A. Windham (Eds.), Plant pathology: Concepts and laboratory exercises (pp. 423–436). Boca Rotan: Taylor and Francis, CRC Press.

    Google Scholar 

  • Pal, K. K., & McSpadden Gardener, B. (2006). Biological control of plant pathogens. The Plant Health Instructor. doi:10.1094/PHI-A-2006-1117-02.

    Google Scholar 

  • Polashock, J. J., Bedker, P. J., & Hillman, B. I. (1997). Movement of a small mitochondrial double-stranded RNA element of Cryphonectria parasitica: ascospore inheritance and implications for mitochondrial recombination. Molecular Genetics and Genomics, 256, 566–571. doi:10.1007/s004380050602.

    Article  CAS  Google Scholar 

  • Puertolas Simon, J., Gil, L., & Pardos, J. A. (2005). Effects of nitrogen fertilization and temperature on frost hardiness of Aleppo pine (Pinus halepensis Mill.) seedlings assessed by chlorophyll fluorescence. Forestry, 78(5), 501–511. doi:10.1093/forestry/cpi055.

    Article  Google Scholar 

  • R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Ranta, H., Pulkkinen, P., & Neuvonen, S. (2000). Susceptibility of six Scots pine clones to the pathogenic fungus Gremmeniella abietina. Scandinavian Journal of Forest Research, 15, 7–12. doi:10.1080/02827580050160411.

    Article  Google Scholar 

  • Regliński, T., Rodenburg, N., Taylor, J. T., Northcott, G. L., Ah Chee, A., Spiers, T. M., & Hill, R. A. (2012). Trichoderma atroviride promotes growth and enhances systemic resistance to Diplodia pinea in radiata pine (Pinus radiata) seedlings. Forest Pathology, 42, 75–78. doi:10.1111/j.1439-0329.2010.00710.x.

    Article  Google Scholar 

  • Reino, J. L., Guerrero, R. F., Hernández-Galan, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7, 89–123. doi:10.1007/s11101-006-9032-2.

    Article  CAS  Google Scholar 

  • Romeralo, C., Santamaría, O., Pando, V., & Diez, J. J. (2015). Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biological Control, 80, 30–39. doi:10.1016/j.biocontrol.2014.09.010.

    Article  Google Scholar 

  • Rühmann, S., Pfeiffer, J., Brunner, P., Szankowski, I., Fischer, T. C., Forkmann, G., & Treutter, D. (2013). Induction of stilbene phytoalexins in grapevine (Vitis vinifera) and transgenic stilbene synthase-apple plants (Malus domestica) by a culture filtrate of Aureobasidium pullulans. Plant Physiology and Biochemistry, 72, 62–71. doi:10.1016/j.plaphy.2013.03.011.

    Article  PubMed  Google Scholar 

  • Santamaría, O., Pajares, J. A., & Diez, J. J. (2003). First report of Gremmeniella abietina on Pinus halepensis in Spain. Plant Pathology, 52, 425–425. doi:10.1046/j.1365-3059.2003.00847.x.

    Article  Google Scholar 

  • Santamaría, O., Pando, V., & Diez, J. J. (2006). Susceptibility of six pine species to Gremmeniella abietina in Spain. Forest Pathology, 36, 349–359. doi:10.1111/j.1439-0329.2006.00463.x.

    Article  Google Scholar 

  • Santamaría, O., González, M. A., Pajares, J. A., & Diez, J. J. (2007). Effect of fungicides, endophytes and fungal filtrates on in vitro growth of Spanish isolates of Gremmeniella abietina. Forest Pathology, 37, 251–262. doi:10.1111/j.1439-0329.2007.00498.x.

    Article  Google Scholar 

  • SAS Institute Inc. SAS/STAT®. (2004). User’s guide. version 9.1. Cary: SAS Institute Inc.

    Google Scholar 

  • Schirmböck, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arisan-Atac, I., Scala, F., Harman, G. E., & Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanism involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60, 4344–4370.

    Google Scholar 

  • Schoeman, M. W., Webber, J. F., & Dickinson, D. J. (1999). The development of ideas in biological control applied to forest. International Biodeterioration & Biodegradation, 43, 109–123. doi:10.1016/S0964-8305(99)00037-2.

    Article  Google Scholar 

  • Sieber, T. N. (2007). Endophytic fungi of forest trees: are they mutualists? Fungal Biology Reviews, 21, 75–89. doi:10.1016/j.fbr.2007.05.004.

    Article  Google Scholar 

  • Simard, M., Rioux, D., & Laflamme, G. (2001). Formation of ligno-suberized tissues in jack pine resistant to the European race of Gremmeniella abietina. Phytopathology, 91, 1128–1140.

    Article  CAS  PubMed  Google Scholar 

  • Simard, M., Laflamme, G., & Rioux, D. (2013). Enzymatic interactions between Gremmeniella abietina var. abietina, European race, and two resistant hosts, Pinus banksiana and P. contorta. Forest Pathology, 43, 29–41. doi:10.1111/j.1439-0329.2012.00790.x.

    Article  Google Scholar 

  • Skilling, D. D., & Waddell, C. D. (1970). Control of Scleroderris canker by fungicide sprays. The Plant Disease Reporter, 54, 663–665.

    CAS  Google Scholar 

  • Smerlis, E. (1980). Evaluation of fungicides for control of Gremmeniella abietina: III- Results of 1978 field assays. Information Report LAU-X-46. Centre Rech. For. Laurentides, Québec, Canada.

  • Talibi, I., Boubaker, H., Boudyach, E. H., & Ait Ben Aoumar, A. (2014). Alternative methods for the control of postharvest citrus diseases. Journal of Applied Microbiolology, 117, 1–17. doi:10.1111/jam.12495.

    Article  CAS  Google Scholar 

  • Terho, M., & Uotila, A. (1999). Virulence of two Finnish Gremmeniella abietina types (A and B). European Journal of Forest Pathology, 29, 143–152. doi:10.1111/j.1439-0329.1999.tb01212.x.

    Google Scholar 

  • Thor, M., & Stenlid, J. (2005). Heterobasidion annosum infection following mechanized first thinning and stump treatment in Picea abies. Scandinavian Journal of Forest Research, 20, 154–164. doi:10.1080/02827580510008338.

    Article  Google Scholar 

  • Tinus, R. W., Burr, K. E., Atzmon, N., & Riov, J. (2000). Relationship between carbohydrate concentration and root growth potential in coniferous seedlings from three climates during cold hardening and dehardening. Tree Physiology, 20, 1097–1104.

    Article  CAS  PubMed  Google Scholar 

  • Viecelli, C. A., Stangarlin, J. R., Kuhn, O. J., & Schwan-Estrada, K. R. F. (2009). Induction of resistance in beans against Pseudocercospora griseola by culture filtrates of Pycnoporus sanguineus. Tropical Plant Pathology, 34, 87–96. doi:10.1590/S1982-56762009000200003.

    Article  Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, L. E., Marra, R., Woo, L. S., & Lorito, M. (2008). Trichoderma-plant-pathogen interactions. Soil Biology & Biochemistry, 40, 1–10. doi:10.1016/j.soilbio.2007.07.002.

    Article  CAS  Google Scholar 

  • Wang, X., Radwan, M. M., Tara, A. H., Gao, J., Wedge, D. E., Rosa, L. H., Cutler, H. G., & Cutler, S. J. (2013). Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. Journal of Agricultural and Food Chemistry, 61, 4551–4555. doi:10.1021/jf400212y.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wulff, S., Hansson, P., & Witzell, J. (2006). The applicability of national forest inventories for estimating forest damage outbreaks -experiences from a Gremmeniella outbreak in Sweden. Canadian Journal of Forest Research, 36, 2605–2613. doi:10.1139/x06-148.

    Article  Google Scholar 

  • Yang, D., Laflamme, G., Bernier, L., & Dessureault, M. (1995). Phaeotheca dimorphospora as a potential biocontrol agent for shoot blight caused by Gremmeniella abietina. Canadian Journal of Plant Pathology, 17, 7–12.

    Article  CAS  Google Scholar 

  • Ylimartimo, A., Laflamme, G., Simard, M., & Rioux, D. (1997). Ultrastructure and cytochemistry of early stages of colonization by Gremmeniella abietina in Pinus resinosa seedlings. Canadian Journal of Botany, 75, 1119–1132. doi:10.1139/b97-123.

    Article  Google Scholar 

  • Yokota, S. (1975). Scleroderris canker of todo-fir in Hokkaido, Northern Japan. III. Dormant infection of the causal fungus. European Journal of Forest Pathology, 5, 7–12. doi:10.1111/j.1439-0329.1975.tb00928.x.

    Article  Google Scholar 

  • Zhang, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2010). Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biological Control, 54, 172–180. doi:10.1016/j.biocontrol.2010.05.003.

    Article  Google Scholar 

  • Zhang, Q., Zhang, J., Yang, L., Zhang, L., Jiang, D., Chen, W., & Li, G. (2014). Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biological Control, 72, 98–108. doi:10.1016/j.biocontrol.2014.02.018.

    Article  Google Scholar 

Download references

Acknowledgments

The study was financed by the project of the Ministry “Biological control of Gremmeniella abietina in Spain (AGL2008-03622)”. We are indebted to the Central Nursery from the regional government of Castilla y León for their contribution of the Aleppo pine seedlings. We want to deeply thank A.R. Benitez for his help with the inoculations. We want to thank to Mr. Francisco de la Rosa and Professor Luis Debán from the Department of Analytical Chemistry from University of Valladolid for all their help with the preparation of samples for HPLC separation of organic compounds as well as their scientific support, help and collaboration. Furthermore, we appreciate V. Pando’s help and advice about the statistics involved. We also want to thank the Short-Term Scientific Mission of the COST action FA1103 for the economic support. Lastly, we want to thank M. Pautasso and the anonymous reviewers for their helpful comments on an earlier draft of this manuscript and S.K. Fox and N. Brenville for the proof-reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Romeralo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeralo, C., Witzell, J., Romeralo-Tapia, R. et al. Antagonistic activity of fungal endophyte filtrates against Gremmeniella abietina infections on Aleppo pine seedlings. Eur J Plant Pathol 143, 691–704 (2015). https://doi.org/10.1007/s10658-015-0719-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0719-3

Keywords

Navigation