Skip to main content
Log in

Thermal time requirements of root-knot nematodes on zucchini-squash and population dynamics with associated yield losses on spring and autumn cropping cycles

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The present research was undertaken to evaluate the effects of soil temperature on the life cycle of root-knot nematodes (RKN) on zucchini-squash in growth chambers and to assess the relationship between Meloidogyne incognita soil population densities at planting (Pi), its multiplication rate, and crop losses of zucchini in field conditions. Thermal requirements for M. incognita and M. javanica were determined by cultivating zucchini plants in pots inoculated with 200 second stage juveniles (J2) of each Meloidogyne species at constant temperatures of 17, 21, 25, and 28 °C. Number of days from nematode inoculation until appearance of egg laying females and until egg hatching were separately recorded. For life cycle completion, base temperatures (Tb) of 12 ºC and 10.8 ºC and accumulated degree-days above Tb (S) of 456 and 526, were estimated for M. incognita and M. javanica, respectively. The relationship between fruit weight and M. incognita Pi fits the Seinhorst damage function, but differed accordingly to the cropping season, spring or autumn. Tolerance limits for M. incognita on zucchini were 8.1 J2 per 250 cm3 of soil in spring and 1.5 in autumn cropping cycles, and the minimum relative yields were 0.61 in spring and 0.69 in autumn. Zucchini-squash was a poorer host for M. incognita in spring than in autumn, since maximum multiplication rates (a) and equilibrium densities (E) were lower in spring (a = 16–96; E = 274–484) than in autumn (a = 270–2307; E = 787–1227).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bridge, J., & Page, S. L. J. (1980). Estimation of root knot nematode infestation levels on roots using a rating chart. Tropical Budapest Management, 26, 296–298.

    Article  Google Scholar 

  • Bridge, J., & Page, S. L. J. (1982). The rice root-knot nematode, Meloidogyne graminicola on deep water rice (Oryza sativa subsp. indica). Revue de Nematologie, 5, 225–232.

  • Davila, M., Allen, L. H., & Dickson, D. W. (2005). Influence of soil temperatures under polyethylene mulch and bare soil on root-knot nematode egg laying. Journal of Nematology, 37, 364–365.

    Google Scholar 

  • Di Vito, M., Greco, N., & Carella, A. (1983). The effect of population densities of Meloidogyne incognita on the yield of cantaloupe and tobacco. Nematologia Mediterranea, 11, 169–174.

    Google Scholar 

  • Di Vito, M., & Greco, N. (1988). The relationship between initial population densities of Meloidogyne artiellia and yield of winter and spring chickpea. Nematologia Mediterranea, 16, 163–166.

    Google Scholar 

  • Ehwaeti, M. E., Phillips, M. S., & Trudgill, D. L. (1998). Dynamics of damage to tomato by Meloidogyne incognita. Fundamental and Applied Nematology, 21, 627–635.

    Google Scholar 

  • Edelstein, M., Oka, Y., Burger, Y., Eizenberg, H., & Cohen, R. (2010). Variation in the response of cucurbits to Meloidogyne incognita and M. javanica. Israel Journal of Plant Sciences, 58, 77-84.

  • Fassuliotis, G. (1971). Susceptibility of Cucurbita spp. to the root-knot nematode, Meloidogyne incognita. Plant Disease Reporter, 55, 666.

  • Ferris, H., Ball, D., Beem, L. W., & Gudmundson, L. A. (1986). Using nematode count data in crop management decisions. California Agriculture, 40, 12–14.

    Google Scholar 

  • Giné, A., López-Gómez, M., Vela, M. D., Ornat, C., Talavera, M., Verdejo-Lucas, S., & Sorribas, F. (2014). Thermal requirements and population dynamics of root-knot nematodes on cucumber and yield losses under protected cultivation. Plant Pathology (In press).

  • Greco, N., & Di Vito, M. (2009). Population dynamics and damage levels. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-Knot Nematodes (pp. 246–274). Wallingford: CABI.

    Chapter  Google Scholar 

  • Hussey, R. A., & Barker, K. R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter, 57, 1025–1028.

    Google Scholar 

  • Kim, D. G., & Ferris, H. (2002). Relationship between crop losses and initial population densities of Meloidogyne arenaria in winter-grown oriental melon in Korea. Journal of Nematology, 34, 43–49.

    PubMed  CAS  PubMed Central  Google Scholar 

  • López-Gómez, M., & Verdejo-Lucas, S. (2014). Penetration and reproduction of root-knot nematodes on cucurbit species. European Journal of Plant Pathology, 138, 863–871.

    Article  Google Scholar 

  • Maleita, C., Curtis, R., & Abrantes, I. (2012). Thermal requirements for the embryonic development and life cycle of Meloidogyne hispanica. Plant Pathology, 61, 1002–1010.

    Article  Google Scholar 

  • Madulu, J. D., & Trudgill, D. L. (1994). Influence of temperature on the development and survival of Meloidogyne javanica. Nematologica, 40, 230–243.

    Article  Google Scholar 

  • MAGRAMA (2011). Anuario de estadística Ministerio de Agricultura, Alimentación y Medio Ambiente 2011. Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente. 1189 pp.

  • McSorley, R., & Waddill, V. H. (1982). Partitioning yield loss on yellow squash into nematode and insect components. Journal of Nematology, 14, 110–118.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Omwega, C., Thomason, I. J., & Roberts, P. A. (1988). A non-destructive technique for screening bean germplasm for resistance to Meloidogyne incognita. Plant Disease, 72, 970–972.

    Article  Google Scholar 

  • Ploeg, A. T., & Maris, P. C. (1999). Effects of temperature on the duration of the life cycle of a Meloidogyne incognita population. Nematology, 1, 389–393.

    Article  Google Scholar 

  • Ploeg, A. T., & Phillips, M. S. (2001). Damage to melon (Cucumis melo L.) cv. Durango by Meloidogyne incognita in Southern California. Nematology, 3, 151-157.

  • Roberts, P. A. (1987). The influence of planting date of carrot on Meloidogyne incognita reproduction and injury to roots. Nematologica, 33, 335–342.

    Article  CAS  Google Scholar 

  • Seinhorst, J. W. (1965). The relationship between nematode density and damage of plants. Nematologica, 11, 137–154.

    Article  Google Scholar 

  • Seinhorst, J. W. (1967). The relationship between population increase and population density in plant parasitic nematodes. III. Definition of terms host, host status and resistance. IV. The influence of external conditions on the regulation of population density. Nematologica, 13, 429–442.

  • Seinhorst, J. W. (1998). The common relation between population density and plant weight in pot and microplot experiments with various nematode plant combinations. Fundamental and Applied Nematology, 21, 459–468.

    Google Scholar 

  • Stirling, G. R. (2000). Nematode monitoring strategies for vegetable crops. RIRDC Publication 00/25, Kingston: Rural Industries Research and Development Corporation. 47 pp

  • Talavera, M., Verdejo-Lucas, S., Ornat, C., Torres, J., Vela, M. D., Macias, F. J., Cortada, L., Arias, D. J., Valero, J., & Sorribas, F. J. (2009). Crop rotations with Mi gene resistant and susceptible tomato cultivars for management of root-knot nematodes in plastic houses. Crop Protection, 28, 662–667.

    Article  Google Scholar 

  • Talavera, M., Sayadi, S., Chirosa-Ríos, M., Salmerón, T., Flor-Peregrín, E., & Verdejo-Lucas, S. (2012). Perception of the impact of root-knot nematode-induced diseases in horticultural protected crops of south-eastern Spain. Nematology, 14, 517–527.

    Article  Google Scholar 

  • Trudgill, D. L. (1995). An assessment of the relevance of thermal time relationships to Nematology. Fundamental and Applied Nematology, 18, 407–417.

    Google Scholar 

  • Vawdrey, L. L., & Stirling, G. R. (1996). The use of tolerance and modification of planting times to reduce damage caused by root-knot nematodes (Meloidogyne spp.) in vegetable cropping systems at Bundaberg, Queensland. Australasian Plant Pathology, 25, 240–246.

    Article  Google Scholar 

  • Wesemael, W. M. L., Viaene, N., & Moens, M. (2011). Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13, 3–16.

  • Vrain, T. C., Barker, K. R., & Holtzman, G. I. (1978). Influence of low temperature on rate of development of Meloidogyne incognita and M. hapla larvae. Journal of Nematology, 10, 166–171.

  • Whitehead, A. G., & Hemming, J. R. (1965). A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annals of Applied Biology, 55, 25–38.

    Article  Google Scholar 

  • Xing, L., & Westphal, A. (2012). Predicting damage of Meloidogyne incognita on watermelon. Journal of Nematology, 44, 127–133.

    PubMed  PubMed Central  Google Scholar 

  • Yeon, I. K., Kim, D. G., & Park, S. D. (2003). Soil temperature and egg mass formation by Meloidogyne arenaria on oriental melon (Cucumis melo L.). Nematology, 5, 721–25.

  • Zhang, F., & Schmitt, D. P. (1995). Embryogenesis and postinfection development of Meloidogyne konaensis. Journal of Nematology, 27, 103–108.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by INIA project RTA2010-00017-C02 and FEDER support from European Union. Authors are thankful to Juan José Pertíñez and Maria Rubio for technical assistance in the field and laboratory. Manuel López-Gómez received support from INIA through a pre-doctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Talavera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vela, M.D., Giné, A., López-Gómez, M. et al. Thermal time requirements of root-knot nematodes on zucchini-squash and population dynamics with associated yield losses on spring and autumn cropping cycles. Eur J Plant Pathol 140, 481–490 (2014). https://doi.org/10.1007/s10658-014-0482-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0482-x

Keywords

Navigation