Skip to main content

Advertisement

Log in

BYL719, a selective inhibitor of phosphoinositide 3-Kinase α, enhances the effect of selumetinib (AZD6244, ARRY-142886) in KRAS-mutant non-small cell lung cancer

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Purpose KRAS is frequently mutated in non-small cell lung cancers (NSCLC), resulting in activation of the MEK/ERK pathway. Because there are currently no drugs that target oncogenic KRAS, MEK inhibitors have been tested clinically as a possible treatment option for patients with NSCLC. However, KRAS-mutant cancers exhibit resistance to MEK inhibitors. Therefore, a combinational strategy is necessary for effective therapy. To address this, we investigated the therapeutic effects of combining selumetinib, a MEK1/2 inhibitor, with BYL719, a PI3Kα inhibitor. Methods We evaluated the effects of selumetinib and BYL719 in vitro and in vivo in NSCLC cell lines. Results The combination of BYL719 and selumetinib resulted in synergistic cytotoxic activity compared with the single agents alone in KRAS-mutant NSCLC cells. At the molecular level, we found that AKT activation strongly influenced the sensitivity of KRAS-mutant NSCLC cells to selumetinib. Selumetinib upregulated phospho-AKT and phosphorylated BAD at ser136, which is responsible for intrinsic drug resistance in KRAS-mutant NSCLC cells. In contrast, inhibition of the PI3K/AKT pathway by BYL719 hindered selumetinib-induced BAD phosphorylation and increased the antitumor efficacy of selumetinib. Furthermore, selumetinib and BYL719 combination therapy showed synergy in the suppression of A549 xenograft tumor growth. On analysis of the pharmacodynamics, selumetinib and BYL719 together resulted in effective inhibition of both p-ERK and p-AKT expression in tumor tissue. Conclusion Taken together, these data suggest that combination treatment with selumetinib and BYL719 is a promising therapeutic approach to overcoming resistance to MEK inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774. doi:10.1038/nrc3106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Roberts PJ, Stinchcombe TE, Der CJ, Socinski MA (2010) Personalized medicine in non-small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor-targeted therapy? J Clin Oncol : Off J Am Soc Clin Oncol 28(31):4769–4777. doi:10.1200/JCO.2009.27.4365

    Article  CAS  Google Scholar 

  3. Mascaux C, Iannino N, Martin B, Paesmans M, Berghmans T, Dusart M, Haller A, Lothaire P, Meert AP, Noel S, Lafitte JJ, Sculier JP (2005) The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 92(1):131–139. doi:10.1038/sj.bjc.6602258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Karachaliou N, Mayo C, Costa C, Magri I, Gimenez-Capitan A, Molina-Vila MA, Rosell R (2013) KRAS mutations in lung cancer. Clin Lung Cancer 14(3):205–214. doi:10.1016/j.cllc.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  5. Cox AD, Der CJ (2002) Ras family signaling: therapeutic targeting. Cancer Biol Ther 1(6):599–606

    Article  CAS  PubMed  Google Scholar 

  6. Young A, Lyons J, Miller AL, Phan VT, Alarcon IR, McCormick F (2009) Ras signaling and therapies. Adv Cancer Res 102:1–17. doi:10.1016/S0065-230X(09)02001-6

    Article  CAS  PubMed  Google Scholar 

  7. Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, Hanson LJ, Gore L, Chow L, Leong S, Maloney L, Gordon G, Simmons H, Marlow A, Litwiler K, Brown S, Poch G, Kane K, Haney J, Eckhardt SG (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol : Off J Am Soc Clin Oncol 26(13):2139–2146. doi:10.1200/JCO.2007.14.4956

    Article  CAS  Google Scholar 

  8. Friday BB, Adjei AA (2008) Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res : Off J Am Assoc Cancer Res 14(2):342–346. doi:10.1158/1078-0432.CCR-07-4790

    Article  CAS  Google Scholar 

  9. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, Parry J, Smith D, Brandhuber BJ, Gross S, Marlow A, Hurley B, Lyssikatos J, Lee PA, Winkler JD, Koch K, Wallace E (2007) Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res : Off J Am Assoc Cancer Res 13(5):1576–1583. doi:10.1158/1078-0432.CCR-06-1150

    Article  CAS  Google Scholar 

  10. Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, Cockerill M, Cartlidge S, Smith PD (2007) AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 6(8):2209–2219. doi:10.1158/1535-7163.MCT-07-0231

    Article  CAS  PubMed  Google Scholar 

  11. Bennouna J, Lang I, Valladares-Ayerbes M, Boer K, Adenis A, Escudero P, Kim TY, Pover GM, Morris CD, Douillard JY (2011) A Phase II, open-label, randomised study to assess the efficacy and safety of the MEK1/2 inhibitor AZD6244 (ARRY-142886) versus capecitabine monotherapy in patients with colorectal cancer who have failed one or two prior chemotherapeutic regimens. Investig New Drugs 29(5):1021–1028. doi:10.1007/s10637-010-9392-8

    Article  CAS  Google Scholar 

  12. Troiani T, Vecchione L, Martinelli E, Capasso A, Costantino S, Ciuffreda LP, Morgillo F, Vitagliano D, D’Aiuto E, De Palma R, Tejpar S, Van Cutsem E, De Lorenzi M, Caraglia M, Berrino L, Ciardiello F (2012) Intrinsic resistance to selumetinib, a selective inhibitor of MEK1/2, by cAMP-dependent protein kinase A activation in human lung and colorectal cancer cells. Br J Cancer 106(10):1648–1659. doi:10.1038/bjc.2012.129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L, Kim JJ, Hatton C, Chopra R, Oberholzer PA, Karpova MB, MacConaill LE, Zhang J, Gray NS, Sellers WR, Dummer R, Garraway LA (2009) MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci U S A 106(48):20411–20416. doi:10.1073/pnas.0905833106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM, Sellers WR, Lengauer C, Stegmeier F (2009) PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 69(10):4286–4293. doi:10.1158/0008-5472.CAN-08-4765

    Article  CAS  PubMed  Google Scholar 

  15. Meng J, Peng H, Dai B, Guo W, Wang L, Ji L, Minna JD, Chresta CM, Smith PD, Fang B, Roth JA (2009) High level of AKT activity is associated with resistance to MEK inhibitor AZD6244 (ARRY-142886). Cancer Biol Ther 8(21):2073–2080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yoon YK, Kim HP, Han SW, Oh Do Y, Im SA, Bang YJ, Kim TY (2010) KRAS mutant lung cancer cells are differentially responsive to MEK inhibitor due to AKT or STAT3 activation: implication for combinatorial approach. Mol Carcinog 49(4):353–362. doi:10.1002/mc.20607

    Article  CAS  PubMed  Google Scholar 

  17. Meng J, Dai B, Fang B, Bekele BN, Bornmann WG, Sun D, Peng Z, Herbst RS, Papadimitrakopoulou V, Minna JD, Peyton M, Roth JA (2010) Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PLoS One 5(11):e14124. doi:10.1371/journal.pone.0014124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong KK (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351–1356. doi:10.1038/nm.1890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, Solit DB, Rosen N (2010) 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18(1):39–51. doi:10.1016/j.ccr.2010.05.023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kinross KM, Brown DV, Kleinschmidt M, Jackson S, Christensen J, Cullinane C, Hicks RJ, Johnstone RW, McArthur GA (2011) In vivo activity of combined PI3K/mTOR and MEK inhibition in a Kras(G12D);Pten deletion mouse model of ovarian cancer. Mol Cancer Ther 10(8):1440–1449. doi:10.1158/1535-7163.MCT-11-0240

    Article  CAS  PubMed  Google Scholar 

  21. Heavey S, O’Byrne KJ, Gately K (2014) Strategies for co-targeting the PI3K/AKT/mTOR pathway in NSCLC. Cancer Treat Rev 40(3):445–456. doi:10.1016/j.ctrv.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  22. Castellano E, Downward J (2011) RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2(3):261–274. doi:10.1177/1947601911408079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Furet P, Guagnano V, Fairhurst RA, Imbach-Weese P, Bruce I, Knapp M, Fritsch C, Blasco F, Blanz J, Aichholz R, Hamon J, Fabbro D, Caravatti G (2013) Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg Med Chem Lett 23(13):3741–3748. doi:10.1016/j.bmcl.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  24. Fritsch C, Huang A, Chatenay-Rivauday C, Schnell C, Reddy A, Liu M, Kauffmann A, Guthy D, Erdmann D, De Pover A, Furet P, Gao H, Ferretti S, Wang Y, Trappe J, Brachmann SM, Maira SM, Wilson C, Boehm M, Garcia-Echeverria C, Chene P, Wiesmann M, Cozens R, Lehar J, Schlegel R, Caravatti G, Hofmann F, Sellers WR (2014) Characterization of the novel and specific PI3Kalpha inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther 13(5):1117–1129. doi:10.1158/1535-7163.MCT-13-0865

    Article  CAS  PubMed  Google Scholar 

  25. Sun C, Hobor S, Bertotti A, Zecchin D, Huang S, Galimi F, Cottino F, Prahallad A, Grernrum W, Tzani A, Schlicker A, Wessels LF, Smit EF, Thunnissen E, Halonen P, Lieftink C, Beijersbergen RL, Di Nicolantonio F, Bardelli A, Trusolino L, Bernards R (2014) Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep 7(1):86–93. doi:10.1016/j.celrep.2014.02.045

    Article  CAS  PubMed  Google Scholar 

  26. Balmanno K, Chell SD, Gillings AS, Hayat S, Cook SJ (2009) Intrinsic resistance to the MEK1/2 inhibitor AZD6244 (ARRY-142886) is associated with weak ERK1/2 signalling and/or strong PI3K signalling in colorectal cancer cell lines. Int J Cancer J Int Cancer 125(10):2332–2341. doi:10.1002/ijc.24604

    Article  CAS  Google Scholar 

  27. Brady SW, Zhang J, Seok D, Wang H, Yu D (2014) Enhanced PI3K p110alpha signaling confers acquired lapatinib resistance that can be effectively reversed by a p110alpha-selective PI3K inhibitor. Mol Cancer Ther 13(1):60–70. doi:10.1158/1535-7163.MCT-13-0518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Serra V, Scaltriti M, Prudkin L, Eichhorn PJ, Ibrahim YH, Chandarlapaty S, Markman B, Rodriguez O, Guzman M, Rodriguez S, Gili M, Russillo M, Parra JL, Singh S, Arribas J, Rosen N, Baselga J (2011) PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 30(22):2547–2557. doi:10.1038/onc.2010.626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Faber AC, Li D, Song Y, Liang MC, Yeap BY, Bronson RT, Lifshits E, Chen Z, Maira SM, Garcia-Echeverria C, Wong KK, Engelman JA (2009) Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc Natl Acad Sci U S A 106(46):19503–19508. doi:10.1073/pnas.0905056106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cragg MS, Jansen ES, Cook M, Harris C, Strasser A, Scott CL (2008) Treatment of B-RAF mutant human tumor cells with a MEK inhibitor requires Bim and is enhanced by a BH3 mimetic. J Clin Invest 118(11):3651–3659. doi:10.1172/JCI35437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Corcoran RB, Cheng KA, Hata AN, Faber AC, Ebi H, Coffee EM, Greninger P, Brown RD, Godfrey JT, Cohoon TJ, Song Y, Lifshits E, Hung KE, Shioda T, Dias-Santagata D, Singh A, Settleman J, Benes CH, Mino-Kenudson M, Wong KK, Engelman JA (2013) Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 23(1):121–128. doi:10.1016/j.ccr.2012.11.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dai B, Meng J, Peyton M, Girard L, Bornmann WG, Ji L, Minna JD, Fang B, Roth JA (2011) STAT3 mediates resistance to MEK inhibitor through microRNA miR-17. Cancer Res 71(10):3658–3668. doi:10.1158/0008-5472.CAN-10-3647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Meng J, Fang B, Liao Y, Chresta CM, Smith PD, Roth JA (2010) Apoptosis induction by MEK inhibition in human lung cancer cells is mediated by Bim. PLoS One 5(9):e13026. doi:10.1371/journal.pone.0013026

    Article  PubMed Central  PubMed  Google Scholar 

  34. Liu Y, Sun SY, Owonikoko TK, Sica GL, Curran WJ, Khuri FR, Deng X (2012) Rapamycin induces bad phosphorylation in association with its resistance to human lung cancer cells. Mol Cancer Ther 11(1):45–56. doi:10.1158/1535-7163.MCT-11-0578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB, Greenberg ME (2000) 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 6(1):41–51

    Article  CAS  PubMed  Google Scholar 

  36. Masters SC, Yang H, Datta SR, Greenberg ME, Fu H (2001) 14-3-3 inhibits bad-induced cell death through interaction with serine-136. Mol Pharmacol 60(6):1325–1331

    CAS  PubMed  Google Scholar 

  37. Riely GJ, Marks J, Pao W (2009) KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc 6(2):201–205. doi:10.1513/pats.200809-107LC

    Article  CAS  PubMed  Google Scholar 

  38. Mao C, Qiu LX, Liao RY, Du FB, Ding H, Yang WC, Li J, Chen Q (2010) KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies. Lung Cancer 69(3):272–278. doi:10.1016/j.lungcan.2009.11.020

    Article  PubMed  Google Scholar 

  39. Janne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, Franke FA, Grinsted L, Zazulina V, Smith P, Smith I, Crino L (2013) Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 14(1):38–47. doi:10.1016/S1470-2045(12)70489-8

    Article  PubMed  Google Scholar 

  40. Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB, Rosen N (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci U S A 106(11):4519–4524. doi:10.1073/pnas.0900780106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pratilas CA, Hanrahan AJ, Halilovic E, Persaud Y, Soh J, Chitale D, Shigematsu H, Yamamoto H, Sawai A, Janakiraman M, Taylor BS, Pao W, Toyooka S, Ladanyi M, Gazdar A, Rosen N, Solit DB (2008) Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res 68(22):9375–9383. doi:10.1158/0008-5472.CAN-08-2223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Acquaviva J, Smith DL, Sang J, Friedland JC, He S, Sequeira M, Zhang C, Wada Y, Proia DA (2012) Targeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib. Mol Cancer Ther 11(12):2633–2643. doi:10.1158/1535-7163.MCT-12-0615

    Article  CAS  PubMed  Google Scholar 

  43. She QB, Solit DB, Ye Q, O’Reilly KE, Lobo J, Rosen N (2005) The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8(4):287–297. doi:10.1016/j.ccr.2005.09.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Scheid MP, Schubert KM, Duronio V (1999) Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. J Biol Chem 274(43):31108–31113

    Article  CAS  PubMed  Google Scholar 

  45. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87(4):619–628

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from the Samsung Biomedical Research Institute (GE1-B3-081-1). The authors thank AstraZeneca Pharmaceutics for selumetinib.

Ethical standards

All experiments were performed in accordance with the regulation of the Institutional Animal Care and Use Committee (IACUC) at the Samsung Biomedical Research Institute (SBRI) and with the applicable laws and regulations of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Ju Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ku, B.M., Jho, E.H., Bae, YH. et al. BYL719, a selective inhibitor of phosphoinositide 3-Kinase α, enhances the effect of selumetinib (AZD6244, ARRY-142886) in KRAS-mutant non-small cell lung cancer. Invest New Drugs 33, 12–21 (2015). https://doi.org/10.1007/s10637-014-0163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-014-0163-9

Keywords

Navigation