Skip to main content

Advertisement

Log in

Brain-Derived Neurotrophic Factor Contributes to Colonic Hypermotility in a Chronic Stress Rat Model

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Brain-derived neurotrophic factor (BDNF) has prokinetic effects on gut motility and is increased in the colonic mucosa of irritable bowel syndrome.

Aims

We aimed to investigate the possible involvement of BDNF in stress-induced colonic hypermotility.

Methods

Male Wistar rats were exposed to daily 1-h water avoidance stress (WAS) or sham WAS for 10 consecutive days. The presence of BDNF and substance P (SP) in the colonic mucosa was determined using enzyme immunoassay kits. Immunohistochemistry and western blotting were performed to assess the expression of BDNF and its receptor, TrkB. The contractions of muscle strips were studied in an organ bath system.

Results

Repeated WAS increased the fecal pellet expulsion and spontaneous contractile activities of the colonic muscle strips. Both BDNF and SP in the colonic mucosa were elevated following WAS. Immunohistochemistry revealed the presence of BDNF and TrkB in the mucosa and myenteric plexus. BDNF and TrkB were both up-regulated in colon devoid of mucosa and submucosa from the stressed rats compared with the control. BDNF pretreatment caused an enhancement of the SP-induced contraction of the circular muscle (CM) strips. TrkB antibody significantly inhibited the contraction of the colonic muscle strips and attenuated the excitatory effects of SP on contractions of the CM strips. Repeated WAS increased the contractile activities of the CM strips induced by SP after BDNF pretreatment, and this effect was reversed by TrkB antibody.

Conclusions

The colonic hypermotility induced by repeated WAS may be associated with the increased expression of endogenous BDNF and TrkB. BDNF may have potential clinical therapeutic use in modulating gut motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology. 2006;130:1480–1491.

    Article  PubMed  Google Scholar 

  2. Whitehead WE, Palsson OS. Is rectal pain sensitivity a biological marker for irritable bowel syndrome: psychological influences on pain perception. Gastroenterology. 1998;115:1263–1271.

    Article  CAS  PubMed  Google Scholar 

  3. La JH, Kim TW, Sung TS, Kim HJ, Kim JY, Yang IS. Increase in neurokinin-1 receptor-mediated colonic motor response in a rat model of irritable bowel syndrome. World J Gastroenterol. 2005;11:237–241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Liang C, Luo H, Liu Y, Cao J, Xia H. Plasma hormones facilitated the hypermotility of the colon in a chronic stress rat model. PLoS ONE. 2012;7:e31774.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Zhang M, Leung FP, Huang Y, Bian ZX. Increased colonic motility in a rat model of irritable bowel syndrome is associated with up-regulation of L-type calcium channels in colonic smooth muscle cells. Neurogastroenterol Motil. 2010;22:e162–e170.

    Article  CAS  PubMed  Google Scholar 

  6. Mayer EA, Craske M, Naliboff BD. Depression, anxiety, and the gastrointestinal system. J Clin Psychiatry. 2001;62:28–37.

    PubMed  Google Scholar 

  7. Mayer EA, Naliboff BD, Chang L, Coutinho SVV. Stress and irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2001;280:G519–G524.

    CAS  PubMed  Google Scholar 

  8. Mayer EA. The neurobiology of stress and gastrointestinal disease. Gut. 2000;47:861–869.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Welgan P, Meshkinpour H, Hoehler F. The effect of stress on colon motor and electrical activity in irritable bowel syndrome. Psychosom Med. 1985;47:139–149.

    Article  CAS  PubMed  Google Scholar 

  10. Ditto B, Miller SB, Barr RG. A one-hour active coping stressor reduces small bowel transit time in healthy young adults. Psychosom Med. 1998;60:7–10.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Luo H, Liang C, et al. Actions of hydrogen sulfide and ATP-sensitive potassium channels on colonic hypermotility in a rat model of chronic stress. PLoS ONE. 2013;8:e55853.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. von Boyen GB, Reinshagen M, Steinkamp M, Adler G, Kirsch J. Enteric nervous plasticity and development: dependence on neurotrophic factors. J Gastroenterol. 2002;37:583–588.

    Article  Google Scholar 

  13. Hoehner JC, Wester T, Pahlman S, Olsen L. Localization of neurotrophins and their high-affinity receptors during human enteric nervous system development. Gastroenterology. 1996;110:756–767.

    Article  CAS  PubMed  Google Scholar 

  14. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000;10:381–391.

    Article  CAS  PubMed  Google Scholar 

  15. Grider JR, Piland BE, Gulick MA, Qiao LY. Brain-derived neurotrophic factor augments peristalsis by augmenting 5-HT and calcitonin gene-related peptide release. Gastroenterology. 2006;130:771–780.

    Article  CAS  PubMed  Google Scholar 

  16. Coulie B, Szarka LA, Camilleri M, et al. Recombinant human neurotrophic factors accelerate colonic transit and relieve constipation in humans. Gastroenterology. 2000;119:41–50.

    Article  CAS  PubMed  Google Scholar 

  17. Chai NL, Dong L, Li ZF, et al. Effects of neurotrophins on gastrointestinal myoelectric activities of rats. World J Gastroenterol. 2003;9:1874–1877.

    CAS  PubMed  Google Scholar 

  18. Yu YB, Zuo XL, Zhao QJ, et al. Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut. 2012;61:685–694.

    Article  CAS  PubMed  Google Scholar 

  19. Bradesi S, Schwetz I, Ennes HS, et al. Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol. 2005;289:G42–G53.

    Article  CAS  PubMed  Google Scholar 

  20. Guarino N, Yoneda A, Shima H, Puri P. Selective neurotrophin deficiency in infantile hypertrophic pyloric stenosis. J Pediatr Surg. 2001;36:1280–1284.

    Article  CAS  PubMed  Google Scholar 

  21. Boesmans W, Gomes P, Janssens J, Tack J, Vanden BP. Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system. Gut. 2008;57:314–322.

    Article  CAS  PubMed  Google Scholar 

  22. Chen FX, Yu YB, Yuan XM, Zuo XL, Li YQ. Brain-derived neurotrophic factor enhances the contraction of intestinal muscle strips induced by SP and CGRP in mice. Regul Pept. 2012;178:86–94.

    Article  CAS  PubMed  Google Scholar 

  23. Al-Qudah M, Anderson CD, Mahavadi S, et al. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C. Am J Physiol Gastrointest Liver Physiol. 2014;306:G328–G337.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Michael GJ, Averill S, Nitkunan A, et al. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci. 1997;17:8476–8490.

    CAS  PubMed  Google Scholar 

  25. Salio C, Averill S, Priestley JV, Merighi A. Costorage of BDNF and neuropeptides within individual dense-core vesicles in central and peripheral neurons. Dev Neurobiol. 2007;67:326–338.

    Article  CAS  PubMed  Google Scholar 

  26. Barbacid M. The Trk family of neurotrophin receptors. J Neurobiol. 1994;25:1386–1403.

    Article  CAS  PubMed  Google Scholar 

  27. Lommatzsch M, Braun A, Mannsfeldt A, et al. Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived Neurotrophic functions. Am J Pathol. 1999;155:1183–1193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Esteban I, Levanti B, Garcia-Suarez O, et al. A neuronal subpopulation in the mammalian enteric nervous system expresses TrkA and TrkC neurotrophin receptor-like proteins. Anat Rec. 1998;251:360–370.

    Article  CAS  PubMed  Google Scholar 

  29. Hansen MB. The enteric nervous system II: gastrointestinal functions. Pharmacol Toxicol. 2003;92:249–257.

    Article  CAS  PubMed  Google Scholar 

  30. Kafitz KW, Rose CR, Thoenen H, Konnerth A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature. 1999;401:918–921.

    Article  CAS  PubMed  Google Scholar 

  31. Blum R, Kafitz KW, Konnerth A. Neurotrophin-evoked depolarization requires the sodium channel Na(V)1.9. Nature. 2002;419:687–693.

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Shang F, Morgan MJ, King DW, Lubowski DZ, Burcher E. Cyclooxygenase-dependent alterations in substance P-mediated contractility and tachykinin NK1 receptor expression in the colonic circular muscle of patients with slow transit constipation. J Pharmacol Exp Ther. 2009;329:282–289.

    Article  CAS  PubMed  Google Scholar 

  33. Mangel AW, Fitz JG, Taylor IL. Modulation of colonic motility by substance P, cholecystokinin and neuropeptide Y. Peptides. 1991;12:1063–1067.

    Article  CAS  PubMed  Google Scholar 

  34. Lever IJ, Bradbury EJ, Cunningham JR, et al. Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J Neurosci. 2001;21:4469–4477.

    CAS  PubMed  Google Scholar 

  35. Merighi A, Bardoni R, Salio C, et al. Presynaptic functional trkB receptors mediate the release of excitatory neurotransmitters from primary afferent terminals in lamina II (substantia gelatinosa) of postnatal rat spinal cord. Dev Neurobiol.. 2008;68:457–475.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesheng Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, X., Luo, H., Fan, H. et al. Brain-Derived Neurotrophic Factor Contributes to Colonic Hypermotility in a Chronic Stress Rat Model. Dig Dis Sci 60, 2316–2326 (2015). https://doi.org/10.1007/s10620-015-3695-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3695-8

Keywords

Navigation