Skip to main content

Advertisement

Log in

Inhibition of ovarian cancer cell metastasis by a fusion polypeptide Tat-ELP

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Tumor cell metastasis is a complex, multi-step process that is a major cause of death and morbidity amongst cancer patients. Cell adhesion plays a critical role in the development of metastatic cancer, and it is mediated by interactions between receptors on the cell surface and ligands of the extracellular matrix or other surfaces. Therefore, inhibition of the cell adhesion process appears to be an effective method of preventing metastasis. This work describes a genetically engineered polypeptide with the potential to prevent cell adhesion and inhibit metastasis. We have found that the cell penetrating peptide Tat, fused with elastin-like polypeptide (ELP) inhibited adhesion, spreading, invasion and migration of SKOV-3 ovarian cancer cells in cell culture. Furthermore, we have also confirmed that Tat-ELP has anti-metastatic potential in an experimental ovarian cancer metastasis model in vivo, causing approximately 80% reduction in the tumor burden. Since cell attachment is an important step in tumor cell invasion and metastasis, these results suggest a novel role of Tat-ELP as a therapeutic intervention in cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CPP:

Cell penetrating peptide

ELP:

Elastin-like polypeptide

IP:

Intraperitoneal

RFU:

Relative fluorescence units

PBS:

Phosphate–buffered saline

Tat:

CPP from HIV-1 transcription factor

References

  1. Greenlee RT et al (2000) Cancer statistics, 2000. CA Cancer J Clin 50(1):7–33. doi:10.3322/canjclin.50.1.7

    Article  PubMed  CAS  Google Scholar 

  2. Vaccarello L et al (1995) Cytoreductive surgery in ovarian carcinoma patients with a documented previously complete surgical response. Gynecol Oncol 57(1):61–65. doi:10.1006/gyno.1995.1099

    Article  PubMed  CAS  Google Scholar 

  3. Geisler JP, Geisler HE (1995) Brain metastases in epithelial ovarian carcinoma. Gynecol Oncol 57(2):246–249. doi:10.1006/gyno.1995.1134

    Article  PubMed  CAS  Google Scholar 

  4. Niedbala MJ, Crickard K, Bernacki RJ (1985) Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. An in vitro model system for studying tumor cell adhesion and invasion. Exp Cell Resv 160(2):499–513. doi:10.1016/0014-4827(85)90197-1

    Article  CAS  Google Scholar 

  5. Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64(2):327–336. doi:10.1016/0092-8674(91)90642-C

    Article  PubMed  CAS  Google Scholar 

  6. Terranova VP, Hujanen ES, Martin GR (1986) Basement membrane and the invasive activity of metastatic tumor cells. J Natl Cancer Instvv 77(2):311–316

    CAS  Google Scholar 

  7. Iwamoto Y et al (1987) YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238(4830):1132–1134. doi:10.1126/science.2961059

    Article  PubMed  CAS  Google Scholar 

  8. Komazawa H et al (1993) Inhibition of tumor metastasis by Arg-Gly-Asp-Ser (RGDS) peptide conjugated with sulfated chitin derivative, SCM-chitin-RGDS. Clin Exp Metastasis 11(6):482–491. doi:10.1007/BF00054939

    Article  PubMed  CAS  Google Scholar 

  9. Massodi I, Bidwell GL 3rd, Raucher D (2005) Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery. J Control Release 108(2–3):396–408. doi:10.1016/j.jconrel.2005.08.007

    Article  PubMed  CAS  Google Scholar 

  10. Brooks H, Lebleu B, Vives E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57(4):559–577. doi:10.1016/j.addr.2004.12.001

    Article  PubMed  CAS  Google Scholar 

  11. Bidwell GL 3rd et al (2007) Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochem Pharmacol 73(5):620–631. doi:10.1016/j.bcp.2006.10.028

    Article  PubMed  CAS  Google Scholar 

  12. Chilkoti A, Dreher MR, Meyer DE (2002) Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv Drug Deliv Rev 54(8):1093–1111. doi:10.1016/S0169-409X(02)00060-1

    Article  PubMed  CAS  Google Scholar 

  13. Massodi I, Raucher D (2007) A thermally responsive Tat-elastin-like polypeptide fusion protein induces membrane leakage, apoptosis, and cell death in human breast cancer cells. J Drug Target 15(9):611–622. doi:10.1080/10611860701502780

    Article  PubMed  CAS  Google Scholar 

  14. Meyer DE, Chilkoti A (2002) Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3(2):357–367. doi:10.1021/bm015630n

    Article  PubMed  CAS  Google Scholar 

  15. Meyer DE, Chilkoti A (1999) Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol 17(11):1112–1115. doi:10.1038/15100

    Article  PubMed  CAS  Google Scholar 

  16. Zhu N et al (2004) Melanoma cell migration is upregulated by tumour necrosis factor-alpha and suppressed by alpha-melanocyte-stimulating hormone. Br J Cancer 90(7):1457–1463. doi:10.1038/sj.bjc.6601698

    Article  PubMed  CAS  Google Scholar 

  17. Voura EB, Sandig M, Siu CH (1998) Cell-cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 43(3):265–275. doi:10.1002/(SICI)1097-0029(19981101)43:3<265::AID-JEMT9>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  18. Zahm JM et al (1997) Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil Cytoskeleton 37(1):33–43. doi:10.1002/(SICI)1097-0169(1997)37:1<33::AID-CM4>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  19. Wong MK, Gotlieb AI (1988) The reorganization of microfilaments, centrosomes, and microtubules during in vitro small wound reendothelialization. J Cell Biol 107(5):1777–1783. doi:10.1083/jcb.107.5.1777

    Article  PubMed  CAS  Google Scholar 

  20. Coomber BL, Gotlieb AI (1990) In vitro endothelial wound repair. Interaction of cell migration and proliferation. Arteriosclerosis 10(2):215–222

    PubMed  CAS  Google Scholar 

  21. Zand L et al (2003) Differential effects of cellular fibronectin and plasma fibronectin on ovarian cancer cell adhesion, migration, and invasion. In Vitro Cellular & developmental biology. Animal 39(3–4):178–182. doi:10.1007/s11626-003-0013-0

    CAS  Google Scholar 

  22. Bidwell GL 3rd, Raucher D (2005) Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy. Mol Cancer Ther 4(7):1076–1085. doi:10.1158/1535-7163.MCT-04-0253

    Article  PubMed  CAS  Google Scholar 

  23. Fjeldstad K, Kolset SO (2005) Decreasing the metastatic potential in cancers–targeting the heparan sulfate proteoglycans. Curr Drug Targets 6(6):665–682. doi:10.2174/1389450054863662

    Article  PubMed  CAS  Google Scholar 

  24. Tarone G et al (1982) Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins. J Cell Biol 94(1):179–186. doi:10.1083/jcb.94.1.179

    Article  PubMed  CAS  Google Scholar 

  25. Saiki I et al (1990) Anti-metastatic and anti-invasive effects of polymeric Arg-Gly-Asp (RGD) peptide, poly(RGD), and its analogues. Jpn J Cancer Res 81(6–7):660–667

    PubMed  CAS  Google Scholar 

  26. Brake DA, Debouck C, Biesecker G (1990) Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat. J Cell Biol 111(3):1275–1281. doi:10.1083/jcb.111.3.1275

    Article  PubMed  CAS  Google Scholar 

  27. Dhawan S et al (1997) Human immunodeficiency virus-1-tat protein induces the cell surface expression of endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells. Blood 90(4):1535–1544

    PubMed  CAS  Google Scholar 

  28. Benelli R et al (1998) Monocyte-derived dendritic cells and monocytes migrate to HIV-Tat RGD and basic peptides. AIDS) 12(3):261–268. doi:10.1097/00002030-199803000-00003

    Article  CAS  Google Scholar 

  29. Mu Y et al (1999) Bioconjugation of laminin-related peptide YIGSR with polyvinyl pyrrolidone increases its antimetastatic effect due to a longer plasma half-life. Biochem Biophys Res Commun 264(3):763–767. doi:10.1006/bbrc.1999.1567

    Article  PubMed  CAS  Google Scholar 

  30. Kaneda Y et al (1995) Synthetic cell-adhesive laminin peptide YIGSR conjugated with polyethylene glycol has improved antimetastatic activity due to a longer half-life in blood. Invasion Metastasis 15(3–4):156–162

    PubMed  CAS  Google Scholar 

  31. Mu Y et al (1999) Bioconjugation of laminin peptide YIGSR with poly(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells. Biochem Biophys Res Commun 255(1):75–79. doi:10.1006/bbrc.1999.9930

    Article  PubMed  CAS  Google Scholar 

  32. Yamamoto Y, Tsutsumi Y, Mayumi T (2002) Molecular design of bioconjugated cell adhesion peptide with a water-soluble polymeric modifier for enhancement of antimetastatic effect. Curr Drug Targets 3(2):123–130. doi:10.2174/1389450024605427

    Article  PubMed  CAS  Google Scholar 

  33. Bidwell LG III, Raucher D (2005) Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy. Mol Cancer Ther 4(7):1076–1085. doi:10.1158/1535-7163.MCT-04-0253

    Article  PubMed  CAS  Google Scholar 

  34. Vogel BE et al (1993) A novel integrin specificity exemplified by binding of the alpha v beta 5 integrin to the basic domain of the HIV Tat protein and vitronectin. J Cell Biol 121(2):461–468. doi:10.1083/jcb.121.2.461

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grant support: This study was supported by the National Institute of Health R21 CA113813-01A2 and Wendy Will Case Foundation grant. We wish to thank Ms. Rowshan Begum and Ms. Leslie Robinson for technical assistance and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drazen Raucher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massodi, I., Bidwell, G.L., Davis, A. et al. Inhibition of ovarian cancer cell metastasis by a fusion polypeptide Tat-ELP. Clin Exp Metastasis 26, 251–260 (2009). https://doi.org/10.1007/s10585-009-9237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9237-z

Keywords

Navigation