Skip to main content

Advertisement

Log in

Carboxymethylated nanofibrillated cellulose: rheological studies

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The rheological properties of carboxymethylated nanofibrillated cellulose (NFC), investigated with controlled shear rate- and oscillatory measurements, are reported for the first time. It was shown that the rheological properties of the studied system are similar to those reported for other NFC systems. The carboxymethylated NFC systems showed among other things high elasticity and a shear thinning behaviour when subjected to increasing shear rates. Further, the shear viscosity and storage modulus of the system displayed power-law relations with respect to the dry content of the NFC suspension. The exponential values, 2 and 2.4 respectively, were found to be in good agreement with both theoretical predictions and published experimental work. Furthermore, it was found that the pulp consistency at which NFC is produced affects the properties of the system. The rheological studies imply that there exists a critical pulp concentration below which the efficiency of the delamination process diminishes; the same adverse effect is also observed when the critical concentration is significantly exceeded due to a lower energy input during delamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83. doi:10.1016/j.carbpol.2013.08.032

    Article  CAS  Google Scholar 

  • Buscall R, McGowan JI, Morton-Jones AJ (1993) The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip. J Rheol 37(4):621–641. doi:10.1122/1.550387

    Article  CAS  Google Scholar 

  • Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72

    Article  Google Scholar 

  • De Gennes PG (1979) Scaling concepts in polymer physics. Cornell Univ Press, Ithaca

    Google Scholar 

  • Doi M, Edwards SF (1978) Dynamics of rod-like macromolecules in concentrated solution Part 1. J Chem Soc Faraday Trans 2(74):560–570. doi:10.1039/f29787400560

    Article  Google Scholar 

  • Dzuy NQ, Boger DV (1983) Yield stress measurement for concentrated suspensions. J Rheol 27(4):321–349. doi:10.1122/1.549709

    Article  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Isogai A (2012) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177

    Article  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Symp 37:797–813

    CAS  Google Scholar 

  • Iotti M, Gregersen OW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145. doi:10.1007/s10924-010-0248-2

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. doi:10.1039/c0nr00583e

    Article  CAS  Google Scholar 

  • Jampala SN, Manolache S, Gunasekaran S, Denes FS (2005) Plasma-enhanced modification of xanthan gum and its effect on rheological properties. J Agric Food Chem 53:3618–3625. doi:10.1021/jf0479113

    Article  CAS  Google Scholar 

  • Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19(6):1807–1819. doi:10.1007/s10570-012-9766-5

    Article  CAS  Google Scholar 

  • Kim C, Yoo B (2006) Rheological properties of rice starch-xanthan gum mixtures. J Food Eng 75:120–128. doi:10.1016/j.jfoodeng.2005.04.002

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433. doi:10.1007/s10570-007-9184-2

    Article  CAS  Google Scholar 

  • Lindström T, Aulin C, Naderi A, Ankerfors M (2014) Microfibrillated cellulose. In: Encyclopedia of polymer science and technology, John Wiley & Sons Inc., Hoboken, pp 1–34. doi:10.1002/0471440264.pst614

  • Lucian LA, Rojas OJ (2009) The nanoscience and technology of renewable biomaterials. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi:10.1021/bm061215p

    Article  Google Scholar 

  • Rezayati Charani P, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20(2):727–740. doi:10.1007/s10570-013-9862-1

    Article  CAS  Google Scholar 

  • Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19(3):647–659. doi:10.1007/s10570-012-9661-0

    Article  CAS  Google Scholar 

  • Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809. doi:10.1039/c1sm06050c

    Article  CAS  Google Scholar 

  • Sandquist D (2013) New horizons for microfibrillated cellulose. Appita J 66:156–162

    CAS  Google Scholar 

  • Siquiera G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymer 2(4):728–765

    Article  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  • Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32

    Article  CAS  Google Scholar 

  • Tatsumi D, Inaba D, Matsumoto T (2008) Layered structure and viscoelastic properties of wet pulp fiber networks. J Soc Rheol Jpn 36:235–239. doi:10.1678/rheology.36.235

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Symp 37:815–827

    CAS  Google Scholar 

  • Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27:163–173

    Article  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795. doi:10.1021/la702481v

    Article  Google Scholar 

  • Walls HJ, Caines SB, Sanchez AM, Khan SA (2003) Yield stress and wall slip phenomena in colloidal silica gels. J Rheol 47(4):847–868. doi:10.1122/1.1574023

    Article  CAS  Google Scholar 

  • Yoshimura AS, Prud homme RK, Princen HM, Kiss AD (1987) A comparison of techniques for measuring yield stresses. J Rheol 31(8):699–710. doi:10.1122/1.549956

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ann-Marie Runebjörk, Åsa Blademo, and Åsa Engström are thanked for their competent supporting work. Mikael Ankerfors is thanked for helpful discussions. Billerud-Korsnäs, Borregaard, De la Rue, Hansol, Holmen, Kemira, Korsnäs, Metsä Group, Stora Enso, Södra, UPM, and Evergreen Packaging are acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Lindström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naderi, A., Lindström, T. & Sundström, J. Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21, 1561–1571 (2014). https://doi.org/10.1007/s10570-014-0192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0192-8

Keywords

Navigation