Skip to main content
Log in

Mechanical reinforcement and water repellency induced to cellulose sheets by a polymer treatment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The present study reports a simple method to control the mechanical and surface properties of cellulose fiber networks and to protect them from humidity, without altering their initial morphology. This is achieved by dip coating the fiber networks in solutions containing different amounts of ethyl cyanoacrylate monomer (ECA). Under ambient humidity and due to the presence of the -OH groups of the cellulose, the ECA polymerizes around each individual cellulosic fiber forming a thin poly(ethyl cyanoacrylate) (PECA) shell. PECA was found to interact with the cellulose surface via hydrogen bonding as evidenced by Fourier transform infrared spectroscopy and thermogravimetric analysis measurements. The detailed surface characterization reveals that only 3.5 wt% of ECA in solution is sufficient to form compact PECA cladding around every cellulose fiber. After the proposed treatment the cellulose sheets become hydrophobic, well protected from the environmental humidity and with increased Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A, Gandini A (2005) Modification of cellulose fibers with functionalized silanes: effect of the fiber treatment on the mechanical performances of cellulose–thermoset composites. J Appl Polym Sci 98(3):974–984

    Article  CAS  Google Scholar 

  • Arias JL, Gallardo V, Gómez-Lopera SA, Plaza RC, Delgado AV (2001) Synthesis and characterization of poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J Control Release 77(3):309–321

    Article  CAS  Google Scholar 

  • Barud HS, Caiut JMA, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2012) Transparent bacterial cellulose–boehmite–epoxi-siloxane nanocomposites. Compos Part A Appl Sci Manuf 43(6):973–977

    Article  CAS  Google Scholar 

  • Bayer IS, Fragouli D, Attanasio A, Sorce B, Bertoni G, Brescia R, Di Corato R, Pellegrino T, Kalyva M, Sabella S, Pompa PP, Cingolani R, Athanassiou A (2011) Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl Mater Interfaces 3(10):4024–4031

    Article  CAS  Google Scholar 

  • Bongiovanni R, Zeno E, Pollicino A, Serafini P, Tonelli C (2011) UV light-induced grafting of fluorinated monomer onto cellulose sheets. Cellulose 18(1):117–126

    Article  CAS  Google Scholar 

  • Cao Y, Tan H (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705(1–3):189–193

    Article  CAS  Google Scholar 

  • Chen ZG, Mo XM, He CL, Wang HS (2008) Intermolecular interactions in electrospun collagen-chitosan complex nanofibers. Carbohydr Polym 72(3):410–418

    Article  CAS  Google Scholar 

  • Deslandes Y, Pleizier G, Poiré E, Sapieha S, Wertheimer MR, Sacher E (1998) The surface modification of pure cellulose paper induced by low-pressure nitrogen plasma treatment. Plasmas Polym 3(2):61–76

    Article  CAS  Google Scholar 

  • Fragouli D, Bayer IS, Di Corato R, Brescia R, Bertoni G, Innocenti C, Gatteschi D, Pellegrino T, Cingolani R, Athanassiou A (2012) Superparamagnetic cellulose fiber networks via nanocomposite functionalization. J Mater Chem 22(4):1662–1666

    Article  CAS  Google Scholar 

  • Han MG, Kim S, Liu SX (2008) Synthesis and degradation behavior of poly(ethyl cyanoacrylate). Polym Degrad Stab 93(7):1243–1251

    Article  CAS  Google Scholar 

  • Kamińska A, Sionkowska A (1996) Effect of UV radiation on the infrared spectra of collagen. Polym Degrad Stab 51(1):19–26

    Article  Google Scholar 

  • Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39(12):4202–4206

    Article  CAS  Google Scholar 

  • Klemarczyk P (2001) The isolation of a zwitterionic initiating species for ethyl cyanoacrylate (ECA) polymerization and the identification of the reaction products between 1° 2° and 3° amines with ECA. Polymer 42(7):2837–2848

    Article  CAS  Google Scholar 

  • Levy I, Nussinovitch A, Shpigel E, Shoseyov O (2002) Recombinant cellulose crosslinking protein: a novel paper-modification biomaterial. Cellulose 9(1):91–98

    Article  CAS  Google Scholar 

  • Li X, Tian J, Shen W (2010) Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17(3):649–659

    Article  Google Scholar 

  • Li H, Fu S, Peng L, Zhan H (2012) Surface modification of cellulose fibers with layer-by-layer self-assembly of lignosulfonate and polyelectrolyte: effects on fibers wetting properties and paper strength. Cellulose 19(2):533–546

    Article  CAS  Google Scholar 

  • Liang H-W, Guan Q-F, Zhu Z, Song L-T, Yao H-B, Lei X, Yu S-H (2012) Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater 4:e19

    Article  Google Scholar 

  • Marechal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites—a review. J Thermoplast Compos Mater 22(2):135–162

    Article  CAS  Google Scholar 

  • Navarro F, Dávalos F, González-Cruz R, López-Dellamary F, Manríquez R, Turrado J, Ramos J (2009) Sisal chemo-thermomechanical pulp paper with a strongly hydrophobic surface coating produced by a pentafluorophenyldimethylsilane cold plasma. J Appl Polym Sci 112(1):479–488

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340(3):417–428

    Article  CAS  Google Scholar 

  • Oowaki H, Matsuda S, Sakai N, Ohta T, Iwata H, Sadato A, Taki W, Hashimoto N, Yoshito I (2000) Non-adhesive cyanoacrylate as an embolic material for endovascular neurosurgery. Biomaterials 21(10):1039–1046

    Article  CAS  Google Scholar 

  • Piantanida G, Pinzari F, Montanari M, Bicchieri M, Coluzza C (2006) Atomic force microscopy applied to the study of Whatman paper surface deteriorated by a cellulolytic filamentous fungus. Macromol Symp 238(1):92–97

    Article  CAS  Google Scholar 

  • Reece TB, Maxey TS, Kron IL (2001) A prospectus on tissue adhesives. Am J Surg 182(2, Supplement 1):S40–S44

    Article  Google Scholar 

  • Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16(6):975–982

    Article  Google Scholar 

  • Samyn P, Schoukens G, Vonck L, Stanssens D, Van Den Abbeele Henk (2011) How thermal curing of an organic paper coating changes topography, chemistry, and wettability. Langmuir 27(13):8509–8521

    Google Scholar 

  • Shen W, Parker IH (2001) A preliminary study of the spreading of AKD in the presence of capillary structures. J Colloid Interface Sci 240(1):172–181

    Article  CAS  Google Scholar 

  • Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848

    Article  CAS  Google Scholar 

  • Tomlinson SK, Ghita OR, Hooper RM, Evans KE (2006) The use of near-infrared spectroscopy for the cure monitoring of an ethyl cyanoacrylate adhesive. Vib Spectrosc 40(1):133–141

    Article  CAS  Google Scholar 

  • Trombetta T, Iengo P, Turri S (2005) Fluorinated segmented polyurethane anionomers for water–oil repellent surface treatments of cellulosic substrates. J Appl Polym Sci 98(3):1364–1372

    Article  CAS  Google Scholar 

  • Vaswani S, Koskinen J, Hess DW (2005) Surface modification of paper and cellulose by plasma-assisted deposition of fluorocarbon films. Surf Coat Technol 195(2–3):121–129

    Article  CAS  Google Scholar 

  • Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55(4):519–548

    Article  CAS  Google Scholar 

  • Wang L, Han G, Zhang Y (2007) Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydr Polym 69(2):391–397

    Article  CAS  Google Scholar 

  • Ye L, Filipe CDM, Kavoosi M, Haynes CA, Pelton R, Brook MA (2009) Immobilization of TiO2 nanoparticles onto paper modification through bioconjugation. J Mater Chem 19(15):2189–2198

    Article  CAS  Google Scholar 

  • Zhai Y, Deng L, Lin X, Xiao L, Jin F, Dong A (2009) Methoxy poly(ethylene glycol)-b-poly(ethyl cyanoacrylate) copolymer nanoparticles as delivery vehicles for dexamethasone. Chin Sci Bull 54(17):2918–2924

    Article  CAS  Google Scholar 

  • Zhang H, Kannangara D, Hilder M, Ettl R, Shen W (2007) The role of vapour deposition in the hydrophobization treatment of cellulose fibres using alkyl ketene dimers and alkenyl succinic acid anhydrides. Colloids Surf A Physicochem Eng Asp 297(1–3):203–210

    Article  CAS  Google Scholar 

  • Zhang L, Zhao N, Li X, Long Y, Zhang X, Xu J (2011) A facile approach to superhydrophobic coating from direct polymerization of “super glue”. Soft Matter 7(8):4050–4054

    Article  CAS  Google Scholar 

  • Zhenwen D, Pinghung W, Girish C, Babak Z (2011) Ferrofluid-impregnated paper actuators. J Microelectromech Syst 20(1):59–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanassia Athanassiou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayadi, F., Bayer, I.S., Fragouli, D. et al. Mechanical reinforcement and water repellency induced to cellulose sheets by a polymer treatment. Cellulose 20, 1501–1509 (2013). https://doi.org/10.1007/s10570-013-9900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9900-z

Keywords

Navigation