Skip to main content
Log in

Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The nature of the electrochemical water splitting activity of layered pure and Fe-doped NiOOH is investigated using density functional theory calculations. We find similar thermodynamics for the oxygen evolution reaction (OER) intermediates between the layers of oxyhydroxides, that is, in the bulk of the materials as on the (001) surface. The effect of interlayer spacing on adsorption energy is affected by both the crystal structure and the level of hydrogenation of the active sites. For the Fe-doped NiOOH, we observe general weakening of binding between the different OER intermediates and the catalyst material. The calculated OER activity depends both on doping and interlayer spacing, and our results are generally congruent with available experimental data. These results suggest that such interlayer “bulk” sites may contribute to measured OER activity for both the pure and Fe-doped NiOOH catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987

    Article  CAS  Google Scholar 

  2. McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137(13):4347–4357

    Article  CAS  Google Scholar 

  3. Stoerzinger KA, Qiao L, Biegalski MD, Shao-Horn Y (2014) Orientation-dependent oxygen evolution activities of rutile IrO\(_2\) and RuO\(_2\). J Phys Chem Lett 5:1636–1641

    Article  CAS  Google Scholar 

  4. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO\(_2\) and RuO\(_2\) nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3:399–404

    Article  CAS  Google Scholar 

  5. Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang HY, Nrskov JK, Jaramillo TF (2016) A highly active and stable IrO\(_x\)/SrIrO\(_3\) catalyst for the oxygen evolution reaction. Science 353:1011–1014

    Article  CAS  Google Scholar 

  6. Louie MW, Bell AT (2013) An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. j Am Chem Soc 135:12329–12337

    Article  CAS  Google Scholar 

  7. Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, Cheng M-J, Sokaras D, Weng T-C, Alonso-Mori R, Davis RC, Bargar JR, Nørskov JK, Nilsson A, Bell AT (2015) Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J Am Chem Soc 137(3):1305–1313

    Article  CAS  Google Scholar 

  8. Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW (2015) Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J Am Chem Soc 137(10):3638–3648

    Article  CAS  Google Scholar 

  9. Burke MS, Enman LJ, Batchellor AS, Zou S, Boettcher SW (2015) Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem Mater 27(22):7549–7558

    Article  CAS  Google Scholar 

  10. Zaharieva I, Najafpour MM, Wiechen M, Haumann M, Kurz P, Dau H (2011) Synthetic manganesecalcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally. Energy Environ Sci 4:2400–2408

    Article  CAS  Google Scholar 

  11. Song F, Hu X (2014) Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J Am Chem Soc 136(47):16481–16484

    Article  CAS  Google Scholar 

  12. Silva CG, Bouizi Y, Forne V, Garci H (2009) Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. J Am Chem Soc 131:13833–13839

    Article  Google Scholar 

  13. Zhang B, Zheng X, Voznyy O, Comin R, Bajdich M, Garcia-Melchor M, Han L, Xu J, Liu M, Zheng L, Garcia de Arquer FP, Dinh CT, Fan F, Yuan M, Yassitepe E, Chen N, Regier T, Liu P, Li Y, De Luna P, Janmohamed A, Xin HL, Yang H, Vojvodic A, Sargent EH (2016) Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352:333–337

    Article  CAS  Google Scholar 

  14. Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc 136:6744–6753

    Article  CAS  Google Scholar 

  15. Burke MS, Zou S, Enman LJ, Kellon JE, Gabor CA, Pledger E, Boettcher SW (2015) Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J Phys Chem Lett 6:3737–3742

    Article  CAS  Google Scholar 

  16. Diaz-Morales O, Ledezma-Yanez I, Koper MTM, Calle-Vallejo F (2015) Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal 5(9):5380–5387

    Article  CAS  Google Scholar 

  17. González-Flores D, Sánchez I, Zaharieva I, Klingan K, Heidkamp J, Chernev P, Menezes PW, Driess M, Dau H, Montero ML (2015) Heterogeneous water oxidation: surface activity versus amorphization activation in cobalt phosphate catalysts. Angew Chem 54(8):2472–2476

    Article  Google Scholar 

  18. Lu Z, Xu W, Zhu W, Yang O, Lei X, Liu J, Li Y, Sun X, Duan X (2014) Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem Commun (Camb Engl) 50(49):6479–6482

    Article  CAS  Google Scholar 

  19. Song F, Hu X (2014) Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun 5:1–9

    Google Scholar 

  20. Van der Ven A, Morgan D, Meng YS, Ceder G (2006) Phase stability of nickel hydroxides and oxyhydroxides. J Electrochem Soc 153(2):A210

    Article  Google Scholar 

  21. Bode H, Dehmelt K, Witte J (1966) Zur kenntnis der nickelhydroxidelektrodeI.Über das nickel (II)-hydroxidhydrat. Electrochim Acta 11:1079–IN1

    Google Scholar 

  22. Landon J, Demeter E, Nilay I, Keturakis C, Wachs IE, Vasic R, Frenkel AI, Kitchin JR (2012) Spectroscopic characterization of mixed Fe Ni Oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal 2:1793–1801

    Article  CAS  Google Scholar 

  23. Michael J, Demeter EL, Illes SM, Fan Q, Boes JR, Kitchi JR (2015) Alkaline electrolyte and Fe impurity effects on the performance and active-phase structure of NiOOH thin films for OER catalysis applications. J Phys Chem 119(21):11475–11481

    CAS  Google Scholar 

  24. Tkalych AJ, Yu K, Carter EA (2015) Structural and electronic features of \(\beta\)-Ni(OH)\(_2\) and \(\beta\)-NiOOH from first principles. J Phyc Chem C 119:24315–24322

    Article  CAS  Google Scholar 

  25. Li Y-F, Selloni A (2014) Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiO\(_x\). ACS Catal 4:1148–1153

    Article  CAS  Google Scholar 

  26. Bates MK, Jia Q, Doan H, Liang W, Mukerjee S (2015) Charge-transfer effects in NiFe and NiFeCo mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal 6(1):155–161

    Article  Google Scholar 

  27. Fan K, Chen H, Ji Y, Huang H, Claesson PM, Daniel Q, Philippe R, Rensmo H, Li F, Luo Y, Sun L (2016) Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat Commun. doi:10.1038/ncomms11981

  28. Klingan K, Ringleb F, Zaharieva I, Heidkamp J, Chernev P, Gonzalez-Flores D, Risch M, Fischer A, Dau H (2014) Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases. ChemSusChem 7(5):1301–1310

    Article  CAS  Google Scholar 

  29. Batchellor AS, Boettcher SW (2015) Pulse-electrodeposited Ni-Fe (oxy)hydroxide oxygen evolution electrocatalysts with high geometric and Intrinsic Activities at Large Mass Loadings. ACS Catal 5(11):6680–6689

    Article  CAS  Google Scholar 

  30. Morales-Guio CG, Liardet L, Hu X (2016) Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J Am Chem Soc 138:8946–8957

    Article  CAS  Google Scholar 

  31. Bahn S, Jacobsen K (2002) An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng 4(3):56–66

    Article  CAS  Google Scholar 

  32. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561

    Article  CAS  Google Scholar 

  33. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269

    Article  CAS  Google Scholar 

  34. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  35. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  37. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  38. Zhao W, Bajdich M, Carey S, Vojvodic A, Nørskov JK, Campbell CT (2016) Water dissociative adsorption on NiO(111): energetics and structure of the hydroxylated surface. ACS Catal 6(111):7377–7384

    Article  CAS  Google Scholar 

  39. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  40. Klüpfel S, Klüpfel, P, Jónsson H (2012) The effect of the Perdew-Zunger self-interaction correction to density functionals on the energetics of small molecules. J Chem Phys 137:124102

    Article  Google Scholar 

  41. Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nrskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. Chemcatchem 3:1159–1165

    Article  CAS  Google Scholar 

  42. Hansen HA, Viswanathan V, Nørskov JK (2014) Unifying kinetic and thermodynamic analysis of 2e and 4e reduction of oxygen on metal surfaces. J Phys Chem C 118:6706–6718

    Article  CAS  Google Scholar 

  43. Fidelsky V, Butera V, Zaffran J, Toroker MC (2016) Three fundamental questions on one of our best water oxidation catalysts: a critical perspective. Theoret Chem Acc 135(7):1–5

    Article  CAS  Google Scholar 

  44. Fidelsky V, Toroker MC (2016) Enhanced Water oxidation catalysis of nickel oxyhydroxide through the addition of vacancies. J Phys Chem C 120(44):25405–25410

    Article  CAS  Google Scholar 

  45. Grimaud A, Diaz-Morales O, Han B, Hong WT, Lee Y-l, Giordano L, Stoerzinger KA, Koper MTM, Shao-Horn Y (2017) Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem. doi:10.1038/nchem.2695

  46. Doyle AD, Montoya JH, Vojvodic A (2015) Improving Oxygen electrochemistry through nanoscopic confinement. ChemCatChem 7:738–742

    Article  CAS  Google Scholar 

  47. Halck NB, Petrykin V, Krtil P, Rossmeisl J (2014) Beyond the volcano limitations in electrocatalysis—oxygen evolution reaction. Phys Chem Chem Phys 16:13682–13688

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Science grant to the SUNCAT Center for Interface Science and Catalysis, and the Laboratory-Directed Research and Development program funded through the SLAC National Accelerator Laboratory. The authors would like to acknowledge the use of the computer time allocation for the “Computational search for highly efficient 2D & 3D nano-catalysts for water splitting” at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Prof. Jens K. Nørskov for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Vojvodic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3140 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doyle, A.D., Bajdich, M. & Vojvodic, A. Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides. Catal Lett 147, 1533–1539 (2017). https://doi.org/10.1007/s10562-017-2010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2010-z

Keywords

Navigation