Skip to main content
Log in

Inserting CO2 into Terminal Alkynes via Bis-(NHC)-Metal Complexes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The direct interaction between CO2 and terminal alkynes in the presence of bis-(NHC)-metal catalysts at ambient conditions was studied. Two Cu and Ag-based bis-N-heterocyclic carbene Transition Metal catalysts were synthesized. The (NHC)2-Ag complex showed a better catalytic performance towards the carboxylation of terminal alkynes in comparison with the copper analogue even for the conversion of acetylene gas. The optimized conditions for the carboxylation are: the use of Cs2CO3 as additive, one atmosphere CO2 and room temperature using 1% mol catalyst. Mechanistic insight into the reaction mechanism is obtained by means of state-of-the-art first principles calculations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Louie J (2005) Transition metal catalyzed reactions of carbon dioxide and other heterocumulenes. Curr Org Chem 9:605

    Article  CAS  Google Scholar 

  2. Mori M (2007) Regio- and stereoselective synthesis of tri- and tetrasubstituted alkenes by introduction of CO2 and alkylzinc reagents into alkynes. Eur J Org Chem 2007:4981–4993. doi:10.1002/ejoc.200700196

    Article  Google Scholar 

  3. Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387. doi:10.1021/cr068357u

    Article  CAS  Google Scholar 

  4. Aresta M, Dibenedetto A, Mathisen A, et al (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalt Trans 17:2975. doi:10.1039/b700658f

    Article  Google Scholar 

  5. Riduan SN, Zhang Y (2010) Recent developments in carbon dioxide utilization under mild conditions. Dalt Trans 39:3347. doi:10.1039/b920163g

    Article  CAS  Google Scholar 

  6. Correa A, Martín R (2009) Metal-catalyzed carboxylation of organometallic reagents with carbon dioxide. Angew Chem Int Ed 48:6201–6204. doi:10.1002/anie.200900667

    Article  CAS  Google Scholar 

  7. Federsel C, Jackstell R, Beller M (2010) State-of-the-art catalysts for hydrogenation of carbon dioxide. Angew Chem Int Ed 49:6254–6257. doi:10.1002/anie.201000533

    Article  CAS  Google Scholar 

  8. Huang K, Sun C-L, Shi Z-J et al (2011) Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chem Soc Rev 40:2435. doi:10.1039/c0cs00129e

    Article  CAS  Google Scholar 

  9. Liu Q, Wu L, Jackstell R, Beller M (2015) Using carbon dioxide as a building block in organic synthesis. Nat Commun 6:5933. doi:10.1038/ncomms6933

    Article  Google Scholar 

  10. Aresta M, Dibenedetto A, Quaranta E (2016) State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology. J Catal. doi:10.1016/j.jcat.2016.04.003

    Google Scholar 

  11. Liu A-H, Yu B, He L-N (2015) Catalytic conversion of carbon dioxide to carboxylic acid derivatives. Greenh Gases Sci Technol 5:17–33. doi:10.1002/ghg.1461

    Article  Google Scholar 

  12. Kim SH, Kim KH, Hong SH (2014) Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas. Angew Chem Int Ed 53:771–774. doi:10.1002/anie.201308341

    Article  CAS  Google Scholar 

  13. Ukai K, Aoki M, Takaya J, Iwasawa N (2006) Rhodium(I)-Catalyzed Carboxylation of Aryl- and Alkenylboronic Esters with CO2. J Am Chem Soc 128:8706–8707. doi:10.1021/ja061232m

    Article  CAS  Google Scholar 

  14. Takaya J, Tadami S, Ukai K, Iwasawa N (2008) Copper(I)-catalyzed carboxylation of aryl- and alkenylboronic esters. Org Lett 10:2697–2700. doi:10.1021/ol800829q

    Article  CAS  Google Scholar 

  15. Ohmiya H, Tanabe M, Sawamura M (2011) Copper-catalyzed carboxylation of alkylboranes with carbon dioxide: formal reductive carboxylation of terminal alkenes. Org Lett 13:1086–1088. doi:10.1021/ol103128x

    Article  CAS  Google Scholar 

  16. Greco GE, Gleason BL, Lowery TA et al (2007) Palladium-catalyzed [3 + 2] cycloaddition of carbon dioxide and trimethylenemethane under mild conditions. Org Lett 9:3817–3820. doi:10.1021/ol7017246

    Article  CAS  Google Scholar 

  17. Aoki M, Izumi S, Kaneko M et al (2007) Ni(0)-promoted hydroxycarboxylation of 1,2-dienes by reaction with CO2 and O2. Org Lett 9:1251–1253. doi:10.1021/ol070038h

    Article  CAS  Google Scholar 

  18. Takaya J, Iwasawa N (2008) Hydrocarboxylation of allenes with CO2 catalyzed by silyl pincer-type palladium complex. J Am Chem Soc 130:15254–15255. doi:10.1021/ja806677w

    Article  CAS  Google Scholar 

  19. Correa A, Martín R (2009) Palladium-catalyzed direct carboxylation of aryl bromides with carbon dioxide. J Am Chem Soc 131:15974–15975. doi:10.1021/ja905264a

    Article  CAS  Google Scholar 

  20. Louie J, Gibby JE, Farnworth MV, Tekavec TN (2002) Efficient nickel-catalyzed [2 + 2 + 2] cycloaddition of CO2 and diynes. J Am Chem Soc 124:15188–15189. doi:10.1021/ja027438e

    Article  CAS  Google Scholar 

  21. Takimoto M, Nakamura Y, Kimura K, Mori M (2004) Highly enantioselective catalytic carbon dioxide incorporation reaction: nickel-catalyzed asymmetric carboxylative cyclization of bis-1,3-dienes. J Am Chem Soc 126:5956–5957. doi:10.1021/ja049506y

    Article  CAS  Google Scholar 

  22. Fujihara T, Xu T, Semba K et al (2011) Copper-catalyzed hydrocarboxylation of alkynes using carbon dioxide and hydrosilanes. Angew Chem Int Ed 50:523–527. doi:10.1002/anie.201006292

    Article  CAS  Google Scholar 

  23. Yoo W, Li C (2008) Copper-catalyzed four-component coupling between aldehydes, amines, alkynes, and carbon dioxide. Adv Synth Catal 350:1503–1506. doi:10.1002/adsc.200800232

    Article  CAS  Google Scholar 

  24. Zhang X, Jia Y-B, Lu X-B et al (2008) Intramolecularly two-centered cooperation catalysis for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett. doi:10.1016/j.tetlet.2008.09.035

    Google Scholar 

  25. Darensbourg DJ, Moncada AI (2010) Tuning the selectivity of the oxetane and CO2 coupling process catalyzed by (Salen)CrCl/ n-Bu4 NX: cyclic carbonate formation vs aliphatic polycarbonate production. Macromolecules 43:5996–6003. doi:10.1021/ma100896x

    Article  CAS  Google Scholar 

  26. Ebert GW, Juda WL, Kosakowski RH et al (2005) Carboxylation and esterification of functionalized arylcopper reagents §. J Org Chem 70:4314–4317. doi:10.1021/jo047731s

    Article  CAS  Google Scholar 

  27. Yoshida H, Fukushima H, Ohshita J, Kunai A (2006) CO2 incorporation reaction using arynes: straightforward access to benzoxazinone. J Am Chem Soc 128:11040–11041. doi:10.1021/ja064157o

    Article  CAS  Google Scholar 

  28. Yoshida H, Morishita T, Ohshita J (2008) Direct access to anthranilic acid derivatives via CO2 Incorporation reaction using arynes. Org Lett 10:3845–3847. doi:10.1021/ol801588s

    Article  CAS  Google Scholar 

  29. Tan M, Zhang Y, Ying JY (2009) Hydrosilylation of ketone and imine over poly-N-heterocyclic carbene particles. Adv Synth Catal 351:1390–1394. doi:10.1002/adsc.200800815

    Article  CAS  Google Scholar 

  30. Chen G, Fu C, Ma S (2009) A novel synthesis of 1,3-oxazine-2,4-diones via a simple and efficient reaction of CO2 with 2,3-allenamides. Org Lett 11:2900–2903. doi:10.1021/ol9009046

    Article  CAS  Google Scholar 

  31. Chen G, Fu C, Ma S et al (2011) A novel synthesis of oxazolidine-2,4-diones via an efficient fixation of CO2 with 3-aryl-2-alkynamides. Org Biomol Chem 9:105–110. doi:10.1039/C0OB00550A

    Article  CAS  Google Scholar 

  32. Vechorkin O, Hirt N, Hu X (2010) Carbon dioxide as the C1 source for direct C–H functionalization of aromatic heterocycles. Org Lett 12:3567–3569. doi:10.1021/ol101450u

    Article  CAS  Google Scholar 

  33. Peterson SL, Stucka SM, Dinsmore CJ (2010) Parallel synthesis of ureas and carbamates from amines and CO2 under mild conditions. Org Lett 12:1340–1343. doi:10.1021/ol100259j

    Article  CAS  Google Scholar 

  34. Boogaerts IIF, Nolan SP (2010) Carboxylation of C–H bonds using N-heterocyclic carbene gold(I) complexes. J Am Chem Soc 132:8858–8859. doi:10.1021/ja103429q

    Article  CAS  Google Scholar 

  35. Boogaerts IIF, Nolan SP, Riduan SN et al (2011) Direct C–H carboxylation with complexes of the coinage metals. Chem Commun 47:3021–3024. doi:10.1039/C0CC03890C

    Article  CAS  Google Scholar 

  36. Sasano K, Takaya J, Iwasawa N (2013) Palladium(II)-catalyzed direct carboxylation of alkenyl C–H bonds with CO2. J Am Chem Soc 135:10954–10957. doi:10.1021/ja405503y

    Article  CAS  Google Scholar 

  37. Yu D, Zhang Y (2010) Copper- and copper-N-heterocyclic carbene-catalyzed C–H activating carboxylation of terminal alkynes with CO2 at ambient conditions. Proc Natl Acad Sci 107:20184–20189. doi:10.1073/pnas.1010962107

    Article  CAS  Google Scholar 

  38. Yu D, Tan MX, Zhang Y (2012) Carboxylation of terminal alkynes with carbon dioxide catalyzed by poly(N-heterocyclic carbene)-supported silver nanoparticles. Adv Synth Catal 354:969–974. doi:10.1002/adsc.201100934

    Article  CAS  Google Scholar 

  39. Zhang X, Zhang W-Z, Ren X et al (2011) Ligand-free Ag(I)-catalyzed carboxylation of terminal alkynes with CO2. Org Lett 13:2402–2405. doi:10.1021/ol200638z

    Article  CAS  Google Scholar 

  40. Manjolinho F, Arndt M, Gooßen K, Gooßen LJ (2012) Catalytic C–H carboxylation of terminal alkynes with carbon dioxide. ACS Catal 2:2014–2021. doi:10.1021/cs300448v

    Article  CAS  Google Scholar 

  41. Guo C-X, Yu B, Xie J-N et al (2015) Silver tungstate: a single-component bifunctional catalyst for carboxylation of terminal alkynes with CO2 in ambient conditions. Green Chem 17:474–479. doi:10.1039/C4GC01638F

    Article  CAS  Google Scholar 

  42. Maeda K, Goto H, Yashima E (2001) Stereospecific polymerization of propiolic acid with rhodium complexes in the presence of bases and helix induction on the polymer in water. Macromolecules 34:1160–1164. doi:10.1021/ma001651i

    Article  CAS  Google Scholar 

  43. Moore LR, Cooks SM, Anderson MS et al (2006) Synthesis and characterization of water-soluble silver and palladium imidazol-2-ylidene complexes with noncoordinating anionic substituents. Organometallics 25:5151–5158. doi:10.1021/om060552b

    Article  CAS  Google Scholar 

  44. Díaz Velázquez H, Ruiz García Y, Vandichel M et al (2014) Water-soluble NHC-Cu catalysts: applications in click chemistry, bioconjugation and mechanistic analysis. Org Biomol Chem 12:9350–9356. doi:10.1039/C4OB01350F

    Article  Google Scholar 

  45. Liu J, Chen J, Zhao J et al (2003) A modified procedure for the synthesis of 1-arylimidazoles. Synthesis 2003:2661–2666. doi:10.1055/s-2003-42444

    Google Scholar 

  46. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  47. Gaussian 09 citation http://www.gaussian.com/g_tech/g_ur/m_citation.htm

  48. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270. doi:10.1063/1.448799

    Article  CAS  Google Scholar 

  49. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473. doi:10.1002/jcc.20078

    Article  CAS  Google Scholar 

  50. Ghysels A, Verstraelen T, Hemelsoet K et al (2010) TAMkin: a versatile package for vibrational analysis and chemical kinetics. J Chem Inf Model 50:1736–1750. doi:10.1021/ci100099g

    Article  CAS  Google Scholar 

  51. Verstraelen T, Van Houteghem M, Van Speybroeck V, Waroquier M (2008) MD-TRACKS: a productive solution for the advanced analysis of molecular dynamics and Monte Carlo simulations. J Chem Inf Model 48:2414–2424. doi:10.1021/ci800233y

    Article  CAS  Google Scholar 

  52. Kolarovič A, Fáberová Z (2009) Catalytic decarboxylation of 2-alkynoic acids. J Org Chem 74:7199–7202. doi:10.1021/jo901377b

    Article  Google Scholar 

  53. Park K, Palani T, Pyo A, Lee S (2012) Synthesis of aryl alkynyl carboxylic acids and aryl alkynes from propiolic acid and aryl halides by site selective coupling and decarboxylation. Tetrahedron Lett. doi:10.1016/j.tetlet.2011.11.117

    Google Scholar 

  54. Díez-González S, Nolan SP (2008) [(NHC)2Cu]X complexes as efficient catalysts for azide-alkyne click chemistry at low catalyst loadings. Angew Chem Int Ed 47:8881–8884. doi:10.1002/anie.200803289

    Article  Google Scholar 

  55. Yang L, Yuan Y, Wang H et al (2014) Theoretical insights into copper(i)–NHC-catalyzed C–H carboxylation of terminal alkynes with CO2: the reaction mechanisms and the roles of NHC. RSC Adv 4:32457. doi:10.1039/C4RA00254G

    Article  CAS  Google Scholar 

  56. Liu C, Luo Y, Zhang W et al (2014) DFT Studies on the silver-catalyzed carboxylation of terminal alkynes with CO2: an insight into the catalytically active species. Organometallics 33:2984–2989. doi:10.1021/om500086u

    Article  CAS  Google Scholar 

  57. Arndt M, Risto E, Krause T, Gooßen LJ (2012) C–H carboxylation of terminal alkynes catalyzed by low loadings of silver(I)/DMSO at ambient CO2 pressure. ChemCatChem 4:484–487. doi:10.1002/cctc.201200047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.V. acknowledges the Chinese Central Government for an “Expert of the State” position in the program of Thousand talents. H. D. V. acknowledges funding from the research funds of the Mexican Petroleum institute for a postdoctoral fellowship No. 90903. M.V. acknowledges funding from the Scientific Research-Foundation Flanders (FWO) for a postdoctoral fellowship. The computational resources and services used in this work were provided by VSC (Flemish Supercomputer Center), funded by the Hercules foundation and the Flemish Government—Department EWI. The authors would like to express their deep appreciation for financial support from the Natural Science Foundation of China (No. 21172027), the Fundamental Research Funds for the Central Universities (WUT: 2014-IV-099) and Independent Innovation Foundation of Wuhan University of Technology (No. 444-20510039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heriberto Díaz Velázquez or Francis Verpoort.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1509 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz Velázquez, H., Wu, ZX., Vandichel, M. et al. Inserting CO2 into Terminal Alkynes via Bis-(NHC)-Metal Complexes. Catal Lett 147, 463–471 (2017). https://doi.org/10.1007/s10562-016-1920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1920-5

Keywords

Navigation