Skip to main content
Log in

Effect of Ru Particle Size on Hydrogenation/Decarbonylation of Propanoic Acid Over Supported Ru Catalysts in Aqueous Phase

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The aqueous-phase hydrogenation of propanoic acid was performed over the Ru/ZrO2 and Ru/Al2O3 catalysts with different Ru loading. Combined with multiple characterization techniques, such as H2-TPR, XRD, CO-FTIR, and DRIFTS of propanoic acid, the effect of Ru loading on the decarbonylation/hydrogenation of propanoic acid was investigated. Although hydrogenation/decarbonylation of carboxylic acids were strongly affected by the nature of supports, the increase of metal loading can cause the larger Ru particles and more bare Ru metal sites, which can facilitate the C–C bond cleavage reaction derived from the decarbonylation of propanoyl species over Ru metal sites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Angew Chem 50:10502

    Article  Google Scholar 

  2. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  3. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Science 327:1110

    Article  CAS  Google Scholar 

  4. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Science 308:1446

    Article  CAS  Google Scholar 

  5. Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Green Chem 12:574

    Article  CAS  Google Scholar 

  6. Luo W, Deka U, Beale AM, Eck ERH, Bruijnincx PCA, Weckhuysen BM (2013) J Catal 301:175

    Article  CAS  Google Scholar 

  7. Serrano-Ruiz JC, Pineda A, Balu AM, Luque R, Campelo JM, Romero AA, Ramos-Fernández JM (2012) Catal Today 195:162

    Article  CAS  Google Scholar 

  8. Luque R, Clark JH (2010) Catal Commun 11:928

    Article  CAS  Google Scholar 

  9. Serrano-Ruiz JC, Dumesic JA (2009) ChemSusChem 2:581

    Article  CAS  Google Scholar 

  10. Serrano-Ruiz JC, Dumesic JA (2009) Green Chem 11:1101

    Article  CAS  Google Scholar 

  11. Delhomme C, Weuster-Botz D, Kuhn FE (2009) Green Chem 11:13

    Article  CAS  Google Scholar 

  12. Olcay H, Xu L, Xu Y, Huber G (2007) ChemCatChem 2:1420

    Article  Google Scholar 

  13. Elliott DC, (2007) Energy Fuels 21:1792

    Article  CAS  Google Scholar 

  14. Zhang X, Chen L, Kong W, Wang T, Zhang Q, Long J, Xu Y, Ma L (2015) Energy 84:83

    Article  CAS  Google Scholar 

  15. Wang Z, Li G, Liu X, Huang Y, Wang A, Chu W, Wang X, Li N (2014) Catal Commun 43:38

    Article  Google Scholar 

  16. Chen YQ, Miller DJ, Jackson JE (2007) Ind Eng Chem Res 46:3334

    Article  CAS  Google Scholar 

  17. Zhang ZG, Jackson JE, Miller DJ (2001) Appl Catal A 219:89

    Article  CAS  Google Scholar 

  18. Jere FT, Miller DJ, Jackson JE (2003) Org Lett 5:527

    Article  CAS  Google Scholar 

  19. Minh DP, Besson M, Pinel C, Fuertes P, Petitjean C (2010) Top Catal 53:1270

    Article  CAS  Google Scholar 

  20. Montassier C, Ménézo JC, Hoang LC, Renaud C, Barbier J (1991) J Mol Catal 70:99

    Article  CAS  Google Scholar 

  21. Lahr DG, Shanks BH (2003) Ind Eng Chem Res 42:5467

    Article  CAS  Google Scholar 

  22. Maris EP, Davis RJ (2007) J Catal 249:328

    Article  CAS  Google Scholar 

  23. Chen L, Zhu Y, Zheng H, Zhang C, Zhang B, Li Y (2011) J Mol Catal A 351:217

    Article  CAS  Google Scholar 

  24. Chen L, Zhu Y, Zheng H, Zhang C, Li Y (2012) Appl Catal A 411:95

    Article  Google Scholar 

  25. Chen L, Li Y, Zhang X, Zhang Q, Wang T, Ma L (2014) Appl Catal A 478:117

    Article  CAS  Google Scholar 

  26. Shen X, Garces LJ, Ding Y, Laubernds K, Zerger RP, Aindow M, Neth EJ, Suib SL (2008) Appl Catal A 335:187

    Article  CAS  Google Scholar 

  27. Chary KVR, Srikanth CS, Venkat Rao V (2009) Catal Commun 10:459

    Article  CAS  Google Scholar 

  28. Kantcheva M, Sayan S (1999) Catal Lett 60:27

    Article  CAS  Google Scholar 

  29. Hosokawa S, Kanai H, Utani K, Taniguchi Y, Saito Y, Imamura S (2003) Appl Catal B 45:181

    Article  CAS  Google Scholar 

  30. Lanza R, Järås SG, Canu P (2007) Appl Catal A 325:57

    Article  CAS  Google Scholar 

  31. Betancourt P, Rives A, Hubaut R, Scott CE, Goldwasser J (1998) Appl Catal A 170:307

    Article  CAS  Google Scholar 

  32. Cattania MG, Parmigiani F, Ragaini V (1989) Surf Sci 211–212:1097

    Article  Google Scholar 

  33. Asakura K, Iwasawa Y (1990) J Chem Soc Faraday Trans 86:2657

    Article  CAS  Google Scholar 

  34. McQuire MW, Rochester CH (1995) J Catal 157:396

    Article  CAS  Google Scholar 

  35. Yokomizo GH, Louis C, Bell AT (1989) J Catal 120:1

    Article  CAS  Google Scholar 

  36. Chin SY, Williams CT, Amiridis MD (2006) J Phys Chem B 110:871

    Article  CAS  Google Scholar 

  37. Riguetto BA, Bueno JMC, Petrov L, Marques CMP (2003) Spectrochim Acta Part A 59:2141

    Article  CAS  Google Scholar 

  38. Elmasides C, Kondarides DI, Grunert W, Verykios XE (1999) J Phys Chem B 103:5227

    Article  CAS  Google Scholar 

  39. Rachmady W, Vannice MA, (2002) J Catal 207:317

    Article  CAS  Google Scholar 

  40. Gnanamani MK, Jacobs G, Keogh RA, Davis BH (2011) J Catal 277:27

    Article  CAS  Google Scholar 

  41. Heinen M, Jusys Z, Behm RJ (2010) J Phys Chem C 114:9850

    Article  CAS  Google Scholar 

  42. Rachmady W, Vannice MA (2002) J Catal 208:170

    Article  CAS  Google Scholar 

  43. Szollosi G, Torok B, Baranyi L, Bartok M (1998) J Catal 179:619

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the financial supports of the National Natural Science Foundation of China (No. 51306189), the Science and Technology Program of Guangdong Province (No. 2014A010106022), the Comprehensive Strategic Cooperation Project of Guangdong Province and Chinese Academy of Sciences (No. 2012B090400042) and China-EU SMEs Cooperation Fund for Energy Conservation Research Project (No. SQ2013ZOB000002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiejun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, Y., Zhang, X. et al. Effect of Ru Particle Size on Hydrogenation/Decarbonylation of Propanoic Acid Over Supported Ru Catalysts in Aqueous Phase. Catal Lett 147, 29–38 (2017). https://doi.org/10.1007/s10562-016-1877-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1877-4

Keywords

Navigation